customize.texi 54.6 KB
Newer Older
Glenn Morris's avatar
Glenn Morris committed
1 2
@c -*-texinfo-*-
@c This is part of the GNU Emacs Lisp Reference Manual.
3
@c Copyright (C) 1997-2012 Free Software Foundation, Inc.
Glenn Morris's avatar
Glenn Morris committed
4 5
@c See the file elisp.texi for copying conditions.
@node Customization, Loading, Macros, Top
6
@chapter Customization Settings
Glenn Morris's avatar
Glenn Morris committed
7

8 9 10 11 12 13 14 15
@cindex customization item
  This chapter describes how to declare customizable variables and
customization groups for classifying them.  We use the term
@dfn{customization item} to include customizable variables,
customization groups, as well as faces.

  @xref{Defining Faces}, for the @code{defface} macro, which is used
for declaring customizable faces.
Glenn Morris's avatar
Glenn Morris committed
16 17

@menu
18 19 20 21 22 23 24
* Common Keywords::         Common keyword arguments for all kinds of
                             customization declarations.
* Group Definitions::       Writing customization group definitions.
* Variable Definitions::    Declaring user options.
* Customization Types::     Specifying the type of a user option.
* Applying Customizations:: Functions to apply customization settings.
* Custom Themes::           Writing Custom themes.
Glenn Morris's avatar
Glenn Morris committed
25 26 27 28 29 30
@end menu

@node Common Keywords
@section Common Item Keywords

@cindex customization keywords
31 32 33 34
  The customization declarations that we will describe in the next few
sections (@code{defcustom}, @code{defgroup}, etc.) all accept keyword
arguments for specifying various information.  This section describes
keywords that apply to all types of customization declarations.
Glenn Morris's avatar
Glenn Morris committed
35 36 37 38 39 40 41 42 43 44 45 46

  All of these keywords, except @code{:tag}, can be used more than once
in a given item.  Each use of the keyword has an independent effect.
The keyword @code{:tag} is an exception because any given item can only
display one name.

@table @code
@item :tag @var{label}
@kindex tag@r{, customization keyword}
Use @var{label}, a string, instead of the item's name, to label the
item in customization menus and buffers.  @strong{Don't use a tag
which is substantially different from the item's real name; that would
47
cause confusion.}
Glenn Morris's avatar
Glenn Morris committed
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

@kindex group@r{, customization keyword}
@item :group @var{group}
Put this customization item in group @var{group}.  When you use
@code{:group} in a @code{defgroup}, it makes the new group a subgroup of
@var{group}.

If you use this keyword more than once, you can put a single item into
more than one group.  Displaying any of those groups will show this
item.  Please don't overdo this, since the result would be annoying.

@item :link @var{link-data}
@kindex link@r{, customization keyword}
Include an external link after the documentation string for this item.
This is a sentence containing an active field which references some
other documentation.

There are several alternatives you can use for @var{link-data}:

@table @code
@item (custom-manual @var{info-node})
Link to an Info node; @var{info-node} is a string which specifies the
node name, as in @code{"(emacs)Top"}.  The link appears as
@samp{[Manual]} in the customization buffer and enters the built-in
Info reader on @var{info-node}.

@item (info-link @var{info-node})
Like @code{custom-manual} except that the link appears
in the customization buffer with the Info node name.

@item (url-link @var{url})
Link to a web page; @var{url} is a string which specifies the
@acronym{URL}.  The link appears in the customization buffer as
@var{url} and invokes the WWW browser specified by
@code{browse-url-browser-function}.

@item (emacs-commentary-link @var{library})
Link to the commentary section of a library; @var{library} is a string
which specifies the library name.

@item (emacs-library-link @var{library})
Link to an Emacs Lisp library file; @var{library} is a string which
specifies the library name.

@item (file-link @var{file})
Link to a file; @var{file} is a string which specifies the name of the
file to visit with @code{find-file} when the user invokes this link.

@item (function-link @var{function})
Link to the documentation of a function; @var{function} is a string
which specifies the name of the function to describe with
@code{describe-function} when the user invokes this link.

@item (variable-link @var{variable})
Link to the documentation of a variable; @var{variable} is a string
which specifies the name of the variable to describe with
@code{describe-variable} when the user invokes this link.

@item (custom-group-link @var{group})
Link to another customization group.  Invoking it creates a new
customization buffer for @var{group}.
@end table

You can specify the text to use in the customization buffer by adding
@code{:tag @var{name}} after the first element of the @var{link-data};
for example, @code{(info-link :tag "foo" "(emacs)Top")} makes a link to
the Emacs manual which appears in the buffer as @samp{foo}.

116
You can use this keyword more than once, to add multiple links.
Glenn Morris's avatar
Glenn Morris committed
117 118 119 120

@item :load @var{file}
@kindex load@r{, customization keyword}
Load file @var{file} (a string) before displaying this customization
121 122
item (@pxref{Loading}).  Loading is done with @code{load}, and only if
the file is not already loaded.
Glenn Morris's avatar
Glenn Morris committed
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

@item :require @var{feature}
@kindex require@r{, customization keyword}
Execute @code{(require '@var{feature})} when your saved customizations
set the value of this item.  @var{feature} should be a symbol.

The most common reason to use @code{:require} is when a variable enables
a feature such as a minor mode, and just setting the variable won't have
any effect unless the code which implements the mode is loaded.

@item :version @var{version}
@kindex version@r{, customization keyword}
This keyword specifies that the item was first introduced in Emacs
version @var{version}, or that its default value was changed in that
version.  The value @var{version} must be a string.

@item :package-version '(@var{package} . @var{version})
@kindex package-version@r{, customization keyword}
This keyword specifies that the item was first introduced in
@var{package} version @var{version}, or that its meaning or default
143 144
value was changed in that version.  This keyword takes priority over
@code{:version}.
Glenn Morris's avatar
Glenn Morris committed
145

146 147 148 149
@var{package} should be the official name of the package, as a symbol
(e.g.@: @code{MH-E}).  @var{version} should be a string.  If the
package @var{package} is released as part of Emacs, @var{package} and
@var{version} should appear in the value of
Glenn Morris's avatar
Glenn Morris committed
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
@code{customize-package-emacs-version-alist}.
@end table

Packages distributed as part of Emacs that use the
@code{:package-version} keyword must also update the
@code{customize-package-emacs-version-alist} variable.

@defvar customize-package-emacs-version-alist
This alist provides a mapping for the versions of Emacs that are
associated with versions of a package listed in the
@code{:package-version} keyword.  Its elements look like this:

@example
(@var{package} (@var{pversion} . @var{eversion})@dots{})
@end example

For each @var{package}, which is a symbol, there are one or more
elements that contain a package version @var{pversion} with an
associated Emacs version @var{eversion}.  These versions are strings.
For example, the MH-E package updates this alist with the following:

@smallexample
(add-to-list 'customize-package-emacs-version-alist
             '(MH-E ("6.0" . "22.1") ("6.1" . "22.1") ("7.0" . "22.1")
                    ("7.1" . "22.1") ("7.2" . "22.1") ("7.3" . "22.1")
                    ("7.4" . "22.1") ("8.0" . "22.1")))
@end smallexample

The value of @var{package} needs to be unique and it needs to match
the @var{package} value appearing in the @code{:package-version}
Nix's avatar
Nix committed
180
keyword.  Since the user might see the value in an error message, a good
Glenn Morris's avatar
Glenn Morris committed
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
choice is the official name of the package, such as MH-E or Gnus.
@end defvar

@node Group Definitions
@section Defining Customization Groups
@cindex define customization group
@cindex customization groups, defining

  Each Emacs Lisp package should have one main customization group which
contains all the options, faces and other groups in the package.  If the
package has a small number of options and faces, use just one group and
put everything in it.  When there are more than twelve or so options and
faces, then you should structure them into subgroups, and put the
subgroups under the package's main customization group.  It is OK to
put some of the options and faces in the package's main group alongside
the subgroups.

  The package's main or only group should be a member of one or more of
the standard customization groups.  (To display the full list of them,
use @kbd{M-x customize}.)  Choose one or more of them (but not too
many), and add your group to each of them using the @code{:group}
keyword.

  The way to declare new customization groups is with @code{defgroup}.

@defmac defgroup group members doc [keyword value]@dots{}
Declare @var{group} as a customization group containing @var{members}.
Do not quote the symbol @var{group}.  The argument @var{doc} specifies
the documentation string for the group.

The argument @var{members} is a list specifying an initial set of
customization items to be members of the group.  However, most often
@var{members} is @code{nil}, and you specify the group's members by
using the @code{:group} keyword when defining those members.

If you want to specify group members through @var{members}, each element
should have the form @code{(@var{name} @var{widget})}.  Here @var{name}
is a symbol, and @var{widget} is a widget type for editing that symbol.
Useful widgets are @code{custom-variable} for a variable,
@code{custom-face} for a face, and @code{custom-group} for a group.

When you introduce a new group into Emacs, use the @code{:version}
keyword in the @code{defgroup}; then you need not use it for
the individual members of the group.

In addition to the common keywords (@pxref{Common Keywords}), you can
also use this keyword in @code{defgroup}:

@table @code
@item :prefix @var{prefix}
@kindex prefix@r{, @code{defgroup} keyword}
232 233 234 235
If the name of an item in the group starts with @var{prefix}, and the
customizable variable @code{custom-unlispify-remove-prefixes} is
non-@code{nil}, the item's tag will omit @var{prefix}.  A group can
have any number of prefixes.
Glenn Morris's avatar
Glenn Morris committed
236 237 238
@end table
@end defmac

239 240 241 242
@defopt custom-unlispify-remove-prefixes
If this variable is non-@code{nil}, the prefixes specified by a
group's @code{:prefix} keyword are omitted from tag names, whenever
the user customizes the group.
Glenn Morris's avatar
Glenn Morris committed
243

244 245 246 247
The default value is @code{nil}, i.e.@: the prefix-discarding feature
is disabled.  This is because discarding prefixes often leads to
confusing names for options and faces.
@end defopt
Glenn Morris's avatar
Glenn Morris committed
248 249 250 251 252 253 254

@node Variable Definitions
@section Defining Customization Variables
@cindex define customization options
@cindex customization variables, how to define

@defmac defcustom option standard doc [keyword value]@dots{}
255 256
This macro declares @var{option} as a user option (i.e.@: a
customizable variable).  You should not quote @var{option}.
257

Glenn Morris's avatar
Glenn Morris committed
258 259 260 261 262 263 264 265 266 267 268 269 270
The argument @var{standard} is an expression that specifies the
standard value for @var{option}.  Evaluating the @code{defcustom} form
evaluates @var{standard}, but does not necessarily install the
standard value.  If @var{option} already has a default value,
@code{defcustom} does not change it.  If the user has saved a
customization for @var{option}, @code{defcustom} installs the user's
customized value as @var{option}'s default value.  If neither of those
cases applies, @code{defcustom} installs the result of evaluating
@var{standard} as the default value.

The expression @var{standard} can be evaluated at various other times,
too---whenever the customization facility needs to know @var{option}'s
standard value.  So be sure to use an expression which is harmless to
271
evaluate at any time.
Glenn Morris's avatar
Glenn Morris committed
272

273 274 275
The argument @var{doc} specifies the documentation string for the
variable.

Glenn Morris's avatar
Glenn Morris committed
276 277 278 279 280 281 282
Every @code{defcustom} should specify @code{:group} at least once.

When you evaluate a @code{defcustom} form with @kbd{C-M-x} in Emacs Lisp
mode (@code{eval-defun}), a special feature of @code{eval-defun}
arranges to set the variable unconditionally, without testing whether
its value is void.  (The same feature applies to @code{defvar}.)
@xref{Defining Variables}.
283

284 285 286 287
If you put a @code{defcustom} in a pre-loaded Emacs Lisp file
(@pxref{Building Emacs}), the standard value installed at dump time
might be incorrect, e.g.@: because another variable that it depends on
has not been assigned the right value yet.  In that case, use
288
@code{custom-reevaluate-setting}, described below, to re-evaluate the
289
standard value after Emacs starts up.
Glenn Morris's avatar
Glenn Morris committed
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
@end defmac

  @code{defcustom} accepts the following additional keywords:

@table @code
@item :type @var{type}
Use @var{type} as the data type for this option.  It specifies which
values are legitimate, and how to display the value.
@xref{Customization Types}, for more information.

@item :options @var{value-list}
@kindex options@r{, @code{defcustom} keyword}
Specify the list of reasonable values for use in this
option.  The user is not restricted to using only these values, but they
are offered as convenient alternatives.

This is meaningful only for certain types, currently including
@code{hook}, @code{plist} and @code{alist}.  See the definition of the
individual types for a description of how to use @code{:options}.

@item :set @var{setfunction}
@kindex set@r{, @code{defcustom} keyword}
Specify @var{setfunction} as the way to change the value of this
313
option when using the Customize interface.  The function
314 315 316 317 318
@var{setfunction} should take two arguments, a symbol (the option
name) and the new value, and should do whatever is necessary to update
the value properly for this option (which may not mean simply setting
the option as a Lisp variable).  The default for @var{setfunction} is
@code{set-default}.
Glenn Morris's avatar
Glenn Morris committed
319

320 321 322
If you specify this keyword, the variable's documentation string
should describe how to do the same job in hand-written Lisp code.

Glenn Morris's avatar
Glenn Morris committed
323 324 325 326 327 328 329 330 331 332 333
@item :get @var{getfunction}
@kindex get@r{, @code{defcustom} keyword}
Specify @var{getfunction} as the way to extract the value of this
option.  The function @var{getfunction} should take one argument, a
symbol, and should return whatever customize should use as the
``current value'' for that symbol (which need not be the symbol's Lisp
value).  The default is @code{default-value}.

You have to really understand the workings of Custom to use
@code{:get} correctly.  It is meant for values that are treated in
Custom as variables but are not actually stored in Lisp variables.  It
334
is almost surely a mistake to specify @var{getfunction} for a value
Glenn Morris's avatar
Glenn Morris committed
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
that really is stored in a Lisp variable.

@item :initialize @var{function}
@kindex initialize@r{, @code{defcustom} keyword}
@var{function} should be a function used to initialize the variable
when the @code{defcustom} is evaluated.  It should take two arguments,
the option name (a symbol) and the value.  Here are some predefined
functions meant for use in this way:

@table @code
@item custom-initialize-set
Use the variable's @code{:set} function to initialize the variable, but
do not reinitialize it if it is already non-void.

@item custom-initialize-default
Like @code{custom-initialize-set}, but use the function
@code{set-default} to set the variable, instead of the variable's
@code{:set} function.  This is the usual choice for a variable whose
@code{:set} function enables or disables a minor mode; with this choice,
defining the variable will not call the minor mode function, but
customizing the variable will do so.

@item custom-initialize-reset
Always use the @code{:set} function to initialize the variable.  If
the variable is already non-void, reset it by calling the @code{:set}
function using the current value (returned by the @code{:get} method).
This is the default @code{:initialize} function.

@item custom-initialize-changed
Use the @code{:set} function to initialize the variable, if it is
already set or has been customized; otherwise, just use
@code{set-default}.

@item custom-initialize-safe-set
@itemx custom-initialize-safe-default
These functions behave like @code{custom-initialize-set}
(@code{custom-initialize-default}, respectively), but catch errors.
If an error occurs during initialization, they set the variable to
373 374 375 376 377 378 379 380 381
@code{nil} using @code{set-default}, and signal no error.

These functions are meant for options defined in pre-loaded files,
where the @var{standard} expression may signal an error because some
required variable or function is not yet defined.  The value normally
gets updated in @file{startup.el}, ignoring the value computed by
@code{defcustom}.  After startup, if one unsets the value and
reevaluates the @code{defcustom}, the @var{standard} expression can be
evaluated without error.
Glenn Morris's avatar
Glenn Morris committed
382 383
@end table

384 385
@item :risky @var{value}
@kindex risky@r{, @code{defcustom} keyword}
386
Set the variable's @code{risky-local-variable} property to
387
@var{value} (@pxref{File Local Variables}).
388 389 390

@item :safe @var{function}
@kindex safe@r{, @code{defcustom} keyword}
391
Set the variable's @code{safe-local-variable} property to
392
@var{function} (@pxref{File Local Variables}).
393

Glenn Morris's avatar
Glenn Morris committed
394 395 396 397 398 399 400 401 402
@item :set-after @var{variables}
@kindex set-after@r{, @code{defcustom} keyword}
When setting variables according to saved customizations, make sure to
set the variables @var{variables} before this one; in other words, delay
setting this variable until after those others have been handled.  Use
@code{:set-after} if setting this variable won't work properly unless
those other variables already have their intended values.
@end table

403 404 405 406 407
  It is useful to specify the @code{:require} keyword for an option
that ``turns on'' a certain feature.  This causes Emacs to load the
feature, if it is not already loaded, whenever the option is set.
@xref{Common Keywords}.  Here is an example, from the library
@file{saveplace.el}:
Glenn Morris's avatar
Glenn Morris committed
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

@example
(defcustom save-place nil
  "Non-nil means automatically save place in each file..."
  :type 'boolean
  :require 'saveplace
  :group 'save-place)
@end example

If a customization item has a type such as @code{hook} or
@code{alist}, which supports @code{:options}, you can add additional
values to the list from outside the @code{defcustom} declaration by
calling @code{custom-add-frequent-value}.  For example, if you define a
function @code{my-lisp-mode-initialization} intended to be called from
@code{emacs-lisp-mode-hook}, you might want to add that to the list of
reasonable values for @code{emacs-lisp-mode-hook}, but not by editing
its definition.  You can do it thus:

@example
(custom-add-frequent-value 'emacs-lisp-mode-hook
   'my-lisp-mode-initialization)
@end example

@defun custom-add-frequent-value symbol value
For the customization option @var{symbol}, add @var{value} to the
list of reasonable values.

The precise effect of adding a value depends on the customization type
of @var{symbol}.
@end defun

Internally, @code{defcustom} uses the symbol property
@code{standard-value} to record the expression for the standard value,
441 442 443 444 445
@code{saved-value} to record the value saved by the user with the
customization buffer, and @code{customized-value} to record the value
set by the user with the customization buffer, but not saved.
@xref{Property Lists}.  These properties are lists, the car of which
is an expression that evaluates to the value.
Glenn Morris's avatar
Glenn Morris committed
446

447
@defun custom-reevaluate-setting symbol
448
This function re-evaluates the standard value of @var{symbol}, which
449
should be a user option declared via @code{defcustom}.  If the
450
variable was customized, this function re-evaluates the saved value
451 452 453 454 455 456 457 458
instead.  Then it sets the user option to that value (using the
option's @code{:set} property if that is defined).

This is useful for customizable options that are defined before their
value could be computed correctly.  For example, during startup Emacs
calls this function for some user options that were defined in
pre-loaded Emacs Lisp files, but whose initial values depend on
information available only at run-time.
459 460
@end defun

461 462 463 464 465 466 467 468
@defun custom-variable-p arg
This function returns non-@code{nil} if @var{arg} is a customizable
variable.  A customizable variable is either a variable that has a
@code{standard-value} or @code{custom-autoload} property (usually
meaning it was declared with @code{defcustom}), or an alias for
another customizable variable.
@end defun

Glenn Morris's avatar
Glenn Morris committed
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
@node Customization Types
@section Customization Types

@cindex customization types
  When you define a user option with @code{defcustom}, you must specify
its @dfn{customization type}.  That is a Lisp object which describes (1)
which values are legitimate and (2) how to display the value in the
customization buffer for editing.

@kindex type@r{, @code{defcustom} keyword}
  You specify the customization type in @code{defcustom} with the
@code{:type} keyword.  The argument of @code{:type} is evaluated, but
only once when the @code{defcustom} is executed, so it isn't useful
for the value to vary.  Normally we use a quoted constant.  For
example:

@example
(defcustom diff-command "diff"
  "The command to use to run diff."
  :type '(string)
  :group 'diff)
@end example

  In general, a customization type is a list whose first element is a
symbol, one of the customization type names defined in the following
sections.  After this symbol come a number of arguments, depending on
the symbol.  Between the type symbol and its arguments, you can
optionally write keyword-value pairs (@pxref{Type Keywords}).

498
  Some type symbols do not use any arguments; those are called
Glenn Morris's avatar
Glenn Morris committed
499 500 501 502 503
@dfn{simple types}.  For a simple type, if you do not use any
keyword-value pairs, you can omit the parentheses around the type
symbol.  For example just @code{string} as a customization type is
equivalent to @code{(string)}.

504 505 506
  All customization types are implemented as widgets; see @ref{Top, ,
Introduction, widget, The Emacs Widget Library}, for details.

Glenn Morris's avatar
Glenn Morris committed
507
@menu
508
* Simple Types::            Simple customization types: sexp, integer, etc.
509 510 511 512
* Composite Types::         Build new types from other types or data.
* Splicing into Lists::     Splice elements into list with @code{:inline}.
* Type Keywords::           Keyword-argument pairs in a customization type.
* Defining New Types::      Give your type a name.
Glenn Morris's avatar
Glenn Morris committed
513 514 515 516 517
@end menu

@node Simple Types
@subsection Simple Types

518 519 520
  This section describes all the simple customization types.  For
several of these customization types, the customization widget
provides inline completion with @kbd{C-M-i} or @kbd{M-@key{TAB}}.
Glenn Morris's avatar
Glenn Morris committed
521 522 523

@table @code
@item sexp
524 525 526
The value may be any Lisp object that can be printed and read back.
You can use @code{sexp} as a fall-back for any option, if you don't
want to take the time to work out a more specific type to use.
Glenn Morris's avatar
Glenn Morris committed
527 528

@item integer
529
The value must be an integer.
Glenn Morris's avatar
Glenn Morris committed
530 531

@item number
532
The value must be a number (floating point or integer).
Glenn Morris's avatar
Glenn Morris committed
533 534

@item float
535
The value must be a floating point number.
Glenn Morris's avatar
Glenn Morris committed
536 537

@item string
538 539
The value must be a string.  The customization buffer shows the string
without delimiting @samp{"} characters or @samp{\} quotes.
Glenn Morris's avatar
Glenn Morris committed
540 541 542 543 544 545 546 547 548 549 550

@item regexp
Like @code{string} except that the string must be a valid regular
expression.

@item character
The value must be a character code.  A character code is actually an
integer, but this type shows the value by inserting the character in the
buffer, rather than by showing the number.

@item file
551
The value must be a file name.  The widget provides completion.
Glenn Morris's avatar
Glenn Morris committed
552 553

@item (file :must-match t)
554 555
The value must be a file name for an existing file.  The widget
provides completion.
Glenn Morris's avatar
Glenn Morris committed
556 557

@item directory
558
The value must be a directory name.  The widget provides completion.
Glenn Morris's avatar
Glenn Morris committed
559 560

@item hook
561 562 563 564
The value must be a list of functions.  This customization type is
used for hook variables.  You can use the @code{:options} keyword in a
hook variable's @code{defcustom} to specify a list of functions
recommended for use in the hook; @xref{Variable Definitions}.
Glenn Morris's avatar
Glenn Morris committed
565

566 567
@item symbol
The value must be a symbol.  It appears in the customization buffer as
568
the symbol name.  The widget provides completion.
Glenn Morris's avatar
Glenn Morris committed
569

570
@item function
571 572
The value must be either a lambda expression or a function name.  The
widget provides completion for function names.
Glenn Morris's avatar
Glenn Morris committed
573

574
@item variable
575
The value must be a variable name.  The widget provides completion.
576 577

@item face
578 579
The value must be a symbol which is a face name.  The widget provides
completion.
580 581 582 583 584 585 586 587 588 589 590 591 592

@item boolean
The value is boolean---either @code{nil} or @code{t}.  Note that by
using @code{choice} and @code{const} together (see the next section),
you can specify that the value must be @code{nil} or @code{t}, but also
specify the text to describe each value in a way that fits the specific
meaning of the alternative.

@item coding-system
The value must be a coding-system name, and you can do completion with
@kbd{M-@key{TAB}}.

@item color
593 594
The value must be a valid color name.  The widget provides completion
for color names, as well as a sample and a button for selecting a
595
color name from a list of color names shown in a @file{*Colors*}
596
buffer.
597 598 599 600 601 602 603 604 605 606 607 608 609 610
@end table

@node Composite Types
@subsection Composite Types
@cindex composite types (customization)

  When none of the simple types is appropriate, you can use composite
types, which build new types from other types or from specified data.
The specified types or data are called the @dfn{arguments} of the
composite type.  The composite type normally looks like this:

@example
(@var{constructor} @var{arguments}@dots{})
@end example
Glenn Morris's avatar
Glenn Morris committed
611 612

@noindent
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
but you can also add keyword-value pairs before the arguments, like
this:

@example
(@var{constructor} @r{@{}@var{keyword} @var{value}@r{@}}@dots{} @var{arguments}@dots{})
@end example

  Here is a table of constructors and how to use them to write
composite types:

@table @code
@item (cons @var{car-type} @var{cdr-type})
The value must be a cons cell, its @sc{car} must fit @var{car-type}, and
its @sc{cdr} must fit @var{cdr-type}.  For example, @code{(cons string
symbol)} is a customization type which matches values such as
@code{("foo" . foo)}.

630 631
In the customization buffer, the @sc{car} and @sc{cdr} are displayed
and edited separately, each according to their specified type.
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

@item (list @var{element-types}@dots{})
The value must be a list with exactly as many elements as the
@var{element-types} given; and each element must fit the
corresponding @var{element-type}.

For example, @code{(list integer string function)} describes a list of
three elements; the first element must be an integer, the second a
string, and the third a function.

In the customization buffer, each element is displayed and edited
separately, according to the type specified for it.

@item (group @var{element-types}@dots{})
This works like @code{list} except for the formatting
of text in the Custom buffer.  @code{list} labels each
element value with its tag; @code{group} does not.

@item (vector @var{element-types}@dots{})
Like @code{list} except that the value must be a vector instead of a
list.  The elements work the same as in @code{list}.

@item (alist :key-type @var{key-type} :value-type @var{value-type})
The value must be a list of cons-cells, the @sc{car} of each cell
representing a key of customization type @var{key-type}, and the
@sc{cdr} of the same cell representing a value of customization type
@var{value-type}.  The user can add and delete key/value pairs, and
edit both the key and the value of each pair.

If omitted, @var{key-type} and @var{value-type} default to
@code{sexp}.
Glenn Morris's avatar
Glenn Morris committed
663 664 665 666 667 668 669 670 671 672 673

The user can add any key matching the specified key type, but you can
give some keys a preferential treatment by specifying them with the
@code{:options} (see @ref{Variable Definitions}).  The specified keys
will always be shown in the customize buffer (together with a suitable
value), with a checkbox to include or exclude or disable the key/value
pair from the alist.  The user will not be able to edit the keys
specified by the @code{:options} keyword argument.

The argument to the @code{:options} keywords should be a list of
specifications for reasonable keys in the alist.  Ordinarily, they are
674
simply atoms, which stand for themselves.  For example:
Glenn Morris's avatar
Glenn Morris committed
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

@smallexample
:options '("foo" "bar" "baz")
@end smallexample

@noindent
specifies that there are three ``known'' keys, namely @code{"foo"},
@code{"bar"} and @code{"baz"}, which will always be shown first.

You may want to restrict the value type for specific keys, for
example, the value associated with the @code{"bar"} key can only be an
integer.  You can specify this by using a list instead of an atom in
the list.  The first element will specify the key, like before, while
the second element will specify the value type.  For example:

@smallexample
:options '("foo" ("bar" integer) "baz")
@end smallexample

Finally, you may want to change how the key is presented.  By default,
the key is simply shown as a @code{const}, since the user cannot change
the special keys specified with the @code{:options} keyword.  However,
you may want to use a more specialized type for presenting the key, like
@code{function-item} if you know it is a symbol with a function binding.
This is done by using a customization type specification instead of a
symbol for the key.

@smallexample
:options '("foo" ((function-item some-function) integer)
           "baz")
@end smallexample

Many alists use lists with two elements, instead of cons cells.  For
example,

@smallexample
(defcustom list-alist '(("foo" 1) ("bar" 2) ("baz" 3))
  "Each element is a list of the form (KEY VALUE).")
@end smallexample

@noindent
instead of

@smallexample
(defcustom cons-alist '(("foo" . 1) ("bar" . 2) ("baz" . 3))
  "Each element is a cons-cell (KEY . VALUE).")
@end smallexample

Because of the way lists are implemented on top of cons cells, you can
treat @code{list-alist} in the example above as a cons cell alist, where
the value type is a list with a single element containing the real
value.

@smallexample
(defcustom list-alist '(("foo" 1) ("bar" 2) ("baz" 3))
  "Each element is a list of the form (KEY VALUE)."
  :type '(alist :value-type (group integer)))
@end smallexample

The @code{group} widget is used here instead of @code{list} only because
the formatting is better suited for the purpose.

Similarly, you can have alists with more values associated with each
key, using variations of this trick:

@smallexample
(defcustom person-data '(("brian"  50 t)
                         ("dorith" 55 nil)
                         ("ken"    52 t))
  "Alist of basic info about people.
Each element has the form (NAME AGE MALE-FLAG)."
  :type '(alist :value-type (group integer boolean)))
@end smallexample

749 750 751 752 753
@item (plist :key-type @var{key-type} :value-type @var{value-type})
This customization type is similar to @code{alist} (see above), except
that (i) the information is stored as a property list,
(@pxref{Property Lists}), and (ii) @var{key-type}, if omitted,
defaults to @code{symbol} rather than @code{sexp}.
Glenn Morris's avatar
Glenn Morris committed
754 755

@item (choice @var{alternative-types}@dots{})
756 757
The value must fit one of @var{alternative-types}.  For example,
@code{(choice integer string)} allows either an integer or a string.
Glenn Morris's avatar
Glenn Morris committed
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948

In the customization buffer, the user selects an alternative
using a menu, and can then edit the value in the usual way for that
alternative.

Normally the strings in this menu are determined automatically from the
choices; however, you can specify different strings for the menu by
including the @code{:tag} keyword in the alternatives.  For example, if
an integer stands for a number of spaces, while a string is text to use
verbatim, you might write the customization type this way,

@example
(choice (integer :tag "Number of spaces")
        (string :tag "Literal text"))
@end example

@noindent
so that the menu offers @samp{Number of spaces} and @samp{Literal text}.

In any alternative for which @code{nil} is not a valid value, other than
a @code{const}, you should specify a valid default for that alternative
using the @code{:value} keyword.  @xref{Type Keywords}.

If some values are covered by more than one of the alternatives,
customize will choose the first alternative that the value fits.  This
means you should always list the most specific types first, and the
most general last.  Here's an example of proper usage:

@example
(choice (const :tag "Off" nil)
        symbol (sexp :tag "Other"))
@end example

@noindent
This way, the special value @code{nil} is not treated like other
symbols, and symbols are not treated like other Lisp expressions.

@item (radio @var{element-types}@dots{})
This is similar to @code{choice}, except that the choices are displayed
using `radio buttons' rather than a menu.  This has the advantage of
displaying documentation for the choices when applicable and so is often
a good choice for a choice between constant functions
(@code{function-item} customization types).

@item (const @var{value})
The value must be @var{value}---nothing else is allowed.

The main use of @code{const} is inside of @code{choice}.  For example,
@code{(choice integer (const nil))} allows either an integer or
@code{nil}.

@code{:tag} is often used with @code{const}, inside of @code{choice}.
For example,

@example
(choice (const :tag "Yes" t)
        (const :tag "No" nil)
        (const :tag "Ask" foo))
@end example

@noindent
describes a variable for which @code{t} means yes, @code{nil} means no,
and @code{foo} means ``ask.''

@item (other @var{value})
This alternative can match any Lisp value, but if the user chooses this
alternative, that selects the value @var{value}.

The main use of @code{other} is as the last element of @code{choice}.
For example,

@example
(choice (const :tag "Yes" t)
        (const :tag "No" nil)
        (other :tag "Ask" foo))
@end example

@noindent
describes a variable for which @code{t} means yes, @code{nil} means no,
and anything else means ``ask.''  If the user chooses @samp{Ask} from
the menu of alternatives, that specifies the value @code{foo}; but any
other value (not @code{t}, @code{nil} or @code{foo}) displays as
@samp{Ask}, just like @code{foo}.

@item (function-item @var{function})
Like @code{const}, but used for values which are functions.  This
displays the documentation string as well as the function name.
The documentation string is either the one you specify with
@code{:doc}, or @var{function}'s own documentation string.

@item (variable-item @var{variable})
Like @code{const}, but used for values which are variable names.  This
displays the documentation string as well as the variable name.  The
documentation string is either the one you specify with @code{:doc}, or
@var{variable}'s own documentation string.

@item (set @var{types}@dots{})
The value must be a list, and each element of the list must match one of
the @var{types} specified.

This appears in the customization buffer as a checklist, so that each of
@var{types} may have either one corresponding element or none.  It is
not possible to specify two different elements that match the same one
of @var{types}.  For example, @code{(set integer symbol)} allows one
integer and/or one symbol in the list; it does not allow multiple
integers or multiple symbols.  As a result, it is rare to use
nonspecific types such as @code{integer} in a @code{set}.

Most often, the @var{types} in a @code{set} are @code{const} types, as
shown here:

@example
(set (const :bold) (const :italic))
@end example

Sometimes they describe possible elements in an alist:

@example
(set (cons :tag "Height" (const height) integer)
     (cons :tag "Width" (const width) integer))
@end example

@noindent
That lets the user specify a height value optionally
and a width value optionally.

@item (repeat @var{element-type})
The value must be a list and each element of the list must fit the type
@var{element-type}.  This appears in the customization buffer as a
list of elements, with @samp{[INS]} and @samp{[DEL]} buttons for adding
more elements or removing elements.

@item (restricted-sexp :match-alternatives @var{criteria})
This is the most general composite type construct.  The value may be
any Lisp object that satisfies one of @var{criteria}.  @var{criteria}
should be a list, and each element should be one of these
possibilities:

@itemize @bullet
@item
A predicate---that is, a function of one argument that has no side
effects, and returns either @code{nil} or non-@code{nil} according to
the argument.  Using a predicate in the list says that objects for which
the predicate returns non-@code{nil} are acceptable.

@item
A quoted constant---that is, @code{'@var{object}}.  This sort of element
in the list says that @var{object} itself is an acceptable value.
@end itemize

For example,

@example
(restricted-sexp :match-alternatives
                 (integerp 't 'nil))
@end example

@noindent
allows integers, @code{t} and @code{nil} as legitimate values.

The customization buffer shows all legitimate values using their read
syntax, and the user edits them textually.
@end table

  Here is a table of the keywords you can use in keyword-value pairs
in a composite type:

@table @code
@item :tag @var{tag}
Use @var{tag} as the name of this alternative, for user communication
purposes.  This is useful for a type that appears inside of a
@code{choice}.

@item :match-alternatives @var{criteria}
@kindex match-alternatives@r{, customization keyword}
Use @var{criteria} to match possible values.  This is used only in
@code{restricted-sexp}.

@item :args @var{argument-list}
@kindex args@r{, customization keyword}
Use the elements of @var{argument-list} as the arguments of the type
construct.  For instance, @code{(const :args (foo))} is equivalent to
@code{(const foo)}.  You rarely need to write @code{:args} explicitly,
because normally the arguments are recognized automatically as
whatever follows the last keyword-value pair.
@end table

@node Splicing into Lists
@subsection Splicing into Lists

  The @code{:inline} feature lets you splice a variable number of
949 950 951 952 953 954 955 956 957 958 959 960
elements into the middle of a @code{list} or @code{vector}
customization type.  You use it by adding @code{:inline t} to a type
specification which is contained in a @code{list} or @code{vector}
specification.

  Normally, each entry in a @code{list} or @code{vector} type
specification describes a single element type.  But when an entry
contains @code{:inline t}, the value it matches is merged directly
into the containing sequence.  For example, if the entry matches a
list with three elements, those become three elements of the overall
sequence.  This is analogous to @samp{,@@} in a backquote construct
(@pxref{Backquote}).
Glenn Morris's avatar
Glenn Morris committed
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

  For example, to specify a list whose first element must be @code{baz}
and whose remaining arguments should be zero or more of @code{foo} and
@code{bar}, use this customization type:

@example
(list (const baz) (set :inline t (const foo) (const bar)))
@end example

@noindent
This matches values such as @code{(baz)}, @code{(baz foo)}, @code{(baz bar)}
and @code{(baz foo bar)}.

  When the element-type is a @code{choice}, you use @code{:inline} not
in the @code{choice} itself, but in (some of) the alternatives of the
@code{choice}.  For example, to match a list which must start with a
file name, followed either by the symbol @code{t} or two strings, use
this customization type:

@example
(list file
      (choice (const t)
              (list :inline t string string)))
@end example

@noindent
If the user chooses the first alternative in the choice, then the
overall list has two elements and the second element is @code{t}.  If
the user chooses the second alternative, then the overall list has three
elements and the second and third must be strings.

@node Type Keywords
@subsection Type Keywords

You can specify keyword-argument pairs in a customization type after the
type name symbol.  Here are the keywords you can use, and their
meanings:

@table @code
@item :value @var{default}
1001 1002 1003 1004 1005 1006
Provide a default value.

If @code{nil} is not a valid value for the alternative, then it is
essential to specify a valid default with @code{:value}.

If you use this for a type that appears as an alternative inside of
Glenn Morris's avatar
Glenn Morris committed
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
@code{choice}; it specifies the default value to use, at first, if and
when the user selects this alternative with the menu in the
customization buffer.

Of course, if the actual value of the option fits this alternative, it
will appear showing the actual value, not @var{default}.

@item :format @var{format-string}
@kindex format@r{, customization keyword}
This string will be inserted in the buffer to represent the value
corresponding to the type.  The following @samp{%} escapes are available
for use in @var{format-string}:

@table @samp
@item %[@var{button}%]
Display the text @var{button} marked as a button.  The @code{:action}
attribute specifies what the button will do if the user invokes it;
its value is a function which takes two arguments---the widget which
the button appears in, and the event.

There is no way to specify two different buttons with different
actions.

@item %@{@var{sample}%@}
Show @var{sample} in a special face specified by @code{:sample-face}.

@item %v
Substitute the item's value.  How the value is represented depends on
the kind of item, and (for variables) on the customization type.

@item %d
Substitute the item's documentation string.

@item %h
Like @samp{%d}, but if the documentation string is more than one line,
add an active field to control whether to show all of it or just the
first line.

@item %t
Substitute the tag here.  You specify the tag with the @code{:tag}
keyword.

@item %%
Display a literal @samp{%}.
@end table

@item :action @var{action}
@kindex action@r{, customization keyword}
Perform @var{action} if the user clicks on a button.

@item :button-face @var{face}
@kindex button-face@r{, customization keyword}
Use the face @var{face} (a face name or a list of face names) for button
text displayed with @samp{%[@dots{}%]}.

@item :button-prefix @var{prefix}
@itemx :button-suffix @var{suffix}
@kindex button-prefix@r{, customization keyword}
@kindex button-suffix@r{, customization keyword}
These specify the text to display before and after a button.
Each can be:

@table @asis
@item @code{nil}
No text is inserted.

@item a string
The string is inserted literally.

@item a symbol
The symbol's value is used.
@end table

@item :tag @var{tag}
Use @var{tag} (a string) as the tag for the value (or part of the value)
that corresponds to this type.

@item :doc @var{doc}
@kindex doc@r{, customization keyword}
Use @var{doc} as the documentation string for this value (or part of the
value) that corresponds to this type.  In order for this to work, you
must specify a value for @code{:format}, and use @samp{%d} or @samp{%h}
in that value.

The usual reason to specify a documentation string for a type is to
provide more information about the meanings of alternatives inside a
@code{:choice} type or the parts of some other composite type.

@item :help-echo @var{motion-doc}
@kindex help-echo@r{, customization keyword}
When you move to this item with @code{widget-forward} or
@code{widget-backward}, it will display the string @var{motion-doc} in
the echo area.  In addition, @var{motion-doc} is used as the mouse
@code{help-echo} string and may actually be a function or form evaluated
to yield a help string.  If it is a function, it is called with one
argument, the widget.

@item :match @var{function}
@kindex match@r{, customization keyword}
Specify how to decide whether a value matches the type.  The
corresponding value, @var{function}, should be a function that accepts
two arguments, a widget and a value; it should return non-@code{nil} if
the value is acceptable.

1111 1112 1113 1114 1115 1116 1117
@item :validate @var{function}
Specify a validation function for input.  @var{function} takes a
widget as an argument, and should return @code{nil} if the widget's
current value is valid for the widget.  Otherwise, it should return
the widget containing the invalid data, and set that widget's
@code{:error} property to a string explaining the error.

Glenn Morris's avatar
Glenn Morris committed
1118 1119 1120 1121 1122 1123 1124
@ignore
@item :indent @var{columns}
Indent this item by @var{columns} columns.  The indentation is used for
@samp{%n}, and automatically for group names, for checklists and radio
buttons, and for editable lists.  It affects the whole of the
item except for the first line.

1125 1126 1127 1128
@item :offset @var{extra}
Indent the subitems of this item @var{extra} columns more than this
item itself.  By default, subitems are indented the same as their
parent.
Glenn Morris's avatar
Glenn Morris committed
1129

1130 1131 1132
@item :extra-offset @var{n}
Add @var{n} extra spaces to this item's indentation, compared to its
parent's indentation.
Glenn Morris's avatar
Glenn Morris committed
1133

1134 1135 1136 1137 1138
@item :notify @var{function}
Call @var{function} each time the item or a subitem is changed.  The
function gets two or three arguments.  The first argument is the item
itself, the second argument is the item that was changed, and the
third argument is the event leading to the change, if any.
Glenn Morris's avatar
Glenn Morris committed
1139

1140 1141 1142
@item :menu-tag @var{tag-string}
Use @var{tag-string} in the menu when the widget is used as an option
in a @code{menu-choice} widget.
Glenn Morris's avatar
Glenn Morris committed
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

@item :menu-tag-get
A function used for finding the tag when the widget is used as an option
in a @code{menu-choice} widget.  By default, the tag used will be either the
@code{:menu-tag} or @code{:tag} property if present, or the @code{princ}
representation of the @code{:value} property if not.

@item :tab-order
Specify the order in which widgets are traversed with
@code{widget-forward} or @code{widget-backward}.  This is only partially
implemented.

@enumerate a
@item
Widgets with tabbing order @code{-1} are ignored.

@item
(Unimplemented) When on a widget with tabbing order @var{n}, go to the
next widget in the buffer with tabbing order @var{n+1} or @code{nil},
whichever comes first.

@item
When on a widget with no tabbing order specified, go to the next widget
in the buffer with a positive tabbing order, or @code{nil}
@end enumerate

@item :parent
The parent of a nested widget (e.g., a @code{menu-choice} item or an
element of a @code{editable-list} widget).

@item :sibling-args
This keyword is only used for members of a @code{radio-button-choice} or
@code{checklist}.  The value should be a list of extra keyword
arguments, which will be used when creating the @code{radio-button} or
@code{checkbox} associated with this item.
@end ignore
@end table

@node Defining New Types
@subsection Defining New Types

In the previous sections we have described how to construct elaborate
type specifications for @code{defcustom}.  In some cases you may want
to give such a type specification a name.  The obvious case is when
you are using the same type for many user options: rather than repeat
the specification for each option, you can give the type specification
a name, and use that name each @code{defcustom}.  The other case is
when a user option's value is a recursive data structure.  To make it
possible for a datatype to refer to itself, it needs to have a name.

Since custom types are implemented as widgets, the way to define a new
customize type is to define a new widget.  We are not going to describe
the widget interface here in details, see @ref{Top, , Introduction,
widget, The Emacs Widget Library}, for that.  Instead we are going to
demonstrate the minimal functionality needed for defining new customize
types by a simple example.

@example
(define-widget 'binary-tree-of-string 'lazy
  "A binary tree made of cons-cells and strings."
  :offset 4
  :tag "Node"
  :type '(choice (string :tag "Leaf" :value "")
                 (cons :tag "Interior"
                       :value ("" . "")
                       binary-tree-of-string
                       binary-tree-of-string)))

(defcustom foo-bar ""
  "Sample variable holding a binary tree of strings."
  :type 'binary-tree-of-string)
@end example

The function to define a new widget is called @code{define-widget}.  The
first argument is the symbol we want to make a new widget type.  The
second argument is a symbol representing an existing widget, the new
widget is going to be defined in terms of difference from the existing
widget.  For the purpose of defining new customization types, the
@code{lazy} widget is perfect, because it accepts a @code{:type} keyword
argument with the same syntax as the keyword argument to
@code{defcustom} with the same name.  The third argument is a
documentation string for the new widget.  You will be able to see that
string with the @kbd{M-x widget-browse @key{RET} binary-tree-of-string
@key{RET}} command.

After these mandatory arguments follow the keyword arguments.  The most
important is @code{:type}, which describes the data type we want to match
with this widget.  Here a @code{binary-tree-of-string} is described as
being either a string, or a cons-cell whose car and cdr are themselves
both @code{binary-tree-of-string}.  Note the reference to the widget
type we are currently in the process of defining.  The @code{:tag}
attribute is a string to name the widget in the user interface, and the
@code{:offset} argument is there to ensure that child nodes are
indented four spaces relative to the parent node, making the tree
structure apparent in the customization buffer.

The @code{defcustom} shows how the new widget can be used as an ordinary
customization type.

The reason for the name @code{lazy} is that the other composite
widgets convert their inferior widgets to internal form when the
widget is instantiated in a buffer.  This conversion is recursive, so
the inferior widgets will convert @emph{their} inferior widgets.  If
the data structure is itself recursive, this conversion is an infinite
recursion.  The @code{lazy} widget prevents the recursion: it convert
its @code{:type} argument only when needed.
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

@node Applying Customizations
@section Applying Customizations

The following functions are responsible for installing the user's
customization settings for variables and faces, respectively.  When
the user invokes @samp{Save for future sessions} in the Customize
interface, that takes effect by writing a @code{custom-set-variables}
and/or a @code{custom-set-faces} form into the custom file, to be
evaluated the next time Emacs starts up.

@defun custom-set-variables &rest args
This function installs the variable customizations specified by
@var{args}.  Each argument in @var{args} should have the form

@example
(@var{var} @var{expression} [@var{now} [@var{request} [@var{comment}]]])
@end example

@noindent
@var{var} is a variable name (a symbol), and @var{expression} is an
expression which evaluates to the desired customized value.

If the @code{defcustom} form for @var{var} has been evaluated prior to
this @code{custom-set-variables} call, @var{expression} is immediately
evaluated, and the variable's value is set to the result.  Otherwise,
@var{expression} is stored into the variable's @code{saved-value}
property, to be evaluated when the relevant @code{defcustom} is called
(usually when the library defining that variable is loaded into
Emacs).

The @var{now}, @var{request}, and @var{comment} entries are for
internal use only, and may be omitted.  @var{now}, if non-@code{nil},
means to set the variable's value now, even if the variable's
@code{defcustom} form has not been evaluated.  @var{request} is a list
of features to be loaded immediately (@pxref{Named Features}).
@var{comment} is a string describing the customization.
@end defun

@defun custom-set-faces &rest args
This function installs the face customizations specified by
@var{args}.  Each argument in @var{args} should have the form

@example
(@var{face} @var{spec} [@var{now} [@var{comment}]])
@end example

@noindent
@var{face} is a face name (a symbol), and @var{spec} is the customized
face specification for that face (@pxref{Defining Faces}).

The @var{now} and @var{comment} entries are for internal use only, and
may be omitted.  @var{now}, if non-@code{nil}, means to install the
face specification now, even if the @code{defface} form has not been
evaluated.  @var{comment} is a string describing the customization.
@end defun

@node Custom Themes
@section Custom Themes

  @dfn{Custom themes} are collections of settings that can be enabled
or disabled as a unit.  @xref{Custom Themes,,, emacs, The GNU Emacs
Manual}.  Each Custom theme is defined by an Emacs Lisp source file,
which should follow the conventions described in this section.
(Instead of writing a Custom theme by hand, you can also create one
using a Customize-like interface; @pxref{Creating Custom Themes,,,
emacs, The GNU Emacs Manual}.)

  A Custom theme file should be named @file{@var{foo}-theme.el}, where
@var{foo} is the theme name.  The first Lisp form in the file should
be a call to @code{deftheme}, and the last form should be a call to
@code{provide-theme}.

@defmac deftheme theme &optional doc
This macro declares @var{theme} (a symbol) as the name of a Custom
1324
theme.  The optional argument @var{doc} should be a string describing
1325
the theme; this is the description shown when the user invokes the
1326 1327
@code{describe-theme} command or types @kbd{?} in the @samp{*Custom
Themes*} buffer.
1328

1329 1330 1331
Two special theme names are disallowed: @code{user} is a ``dummy''
theme which stores the user's direct customization settings, and
@code{changed} is a ``dummy'' theme which stores changes made outside
1332 1333 1334 1335 1336 1337 1338 1339 1340
of the Customize system.  If you specify either of these as the
@var{theme} argument, @code{deftheme} signals an error.
@end defmac

@defmac provide-theme theme
This macro declares that the theme named @var{theme} has been fully
specified.
@end defmac

1341 1342
  In between @code{deftheme} and @code{provide-theme} are Lisp forms
specifying the theme settings: usually a call to
1343
@code{custom-theme-set-variables} and/or a call to
1344
@code{custom-theme-set-faces}.
1345 1346

@defun custom-theme-set-variables theme &rest args
1347 1348 1349
This function specifies the Custom theme @var{theme}'s variable
settings.  @var{theme} should be a symbol.  Each argument in
@var{args} should be a list of the form
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360

@example
(@var{var} @var{expression} [@var{now} [@var{request} [@var{comment}]]])
@end example

@noindent
where the list entries have the same meanings as in
@code{custom-set-variables}.  @xref{Applying Customizations}.
@end defun

@defun custom-theme-set-faces theme &rest args
1361 1362 1363
This function specifies the Custom theme @var{theme}'s face settings.
@var{theme} should be a symbol.  Each argument in @var{args} should be
a list of the form
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

@example
(@var{face} @var{spec} [@var{now} [@var{comment}]])
@end example

@noindent
where the list entries have the same meanings as in
@code{custom-set-faces}.  @xref{Applying Customizations}.
@end defun

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
  In theory, a theme file can also contain other Lisp forms, which
would be evaluated when loading the theme, but that is ``bad form''.
To protect against loading themes containing malicious code, Emacs
displays the source file and asks for confirmation from the user
before loading any non-built-in theme for the first time.

  The following functions are useful for programmatically enabling and
disabling Custom themes:

@defun custom-theme-p theme
This function return a non-@code{nil} value if @var{theme} (a symbol)
is the name of a Custom theme (i.e.@: a Custom theme which has been
loaded into Emacs, whether or not the theme is enabled).  Otherwise,
it returns @code{nil}.
@end defun

@deffn Command load-theme theme &optional no-confirm no-enable
This function loads the Custom theme named @var{theme} from its source
file, looking for the source file in the directories specified by the
variable @code{custom-theme-load-path}.  @xref{Custom Themes,,, emacs,
The GNU Emacs Manual}.  It also @dfn{enables} the theme, causing its
variable and face settings to take effect.

If the optional argument @var{no-confirm} is non-@code{nil}, this
skips prompting the user for confirmation before loading the theme.

If the optional argument @var{no-enable} is non-@code{nil}, the theme
is loaded but not enabled.
@end deffn

@deffn Command enable-theme theme
This function enables the Custom theme named @var{theme}.  It signals
an error if no such theme has been loaded.
@end deffn

@deffn Command disable-theme theme
This function disables the Custom theme named @var{theme}.  The theme
remains loaded, so that a subsequent call to @code{enable-theme} will
re-enable it.
@end deffn