numbers.texi 35.9 KB
Newer Older
Glenn Morris's avatar
Glenn Morris committed
1 2
@c -*-texinfo-*-
@c This is part of the GNU Emacs Lisp Reference Manual.
3 4
@c Copyright (C) 1990-1995, 1998-1999, 2001-2013 Free Software
@c Foundation, Inc.
Glenn Morris's avatar
Glenn Morris committed
5
@c See the file elisp.texi for copying conditions.
6
@node Numbers
Glenn Morris's avatar
Glenn Morris committed
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
@chapter Numbers
@cindex integers
@cindex numbers

  GNU Emacs supports two numeric data types: @dfn{integers} and
@dfn{floating point numbers}.  Integers are whole numbers such as
@minus{}3, 0, 7, 13, and 511.  Their values are exact.  Floating point
numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
2.71828.  They can also be expressed in exponential notation: 1.5e2
equals 150; in this example, @samp{e2} stands for ten to the second
power, and that is multiplied by 1.5.  Floating point values are not
exact; they have a fixed, limited amount of precision.

@menu
* Integer Basics::            Representation and range of integers.
Glenn Morris's avatar
Glenn Morris committed
22
* Float Basics::              Representation and range of floating point.
Glenn Morris's avatar
Glenn Morris committed
23 24
* Predicates on Numbers::     Testing for numbers.
* Comparison of Numbers::     Equality and inequality predicates.
Glenn Morris's avatar
Glenn Morris committed
25
* Numeric Conversions::       Converting float to integer and vice versa.
Glenn Morris's avatar
Glenn Morris committed
26 27 28 29 30 31 32 33 34 35 36
* Arithmetic Operations::     How to add, subtract, multiply and divide.
* Rounding Operations::       Explicitly rounding floating point numbers.
* Bitwise Operations::        Logical and, or, not, shifting.
* Math Functions::            Trig, exponential and logarithmic functions.
* Random Numbers::            Obtaining random integers, predictable or not.
@end menu

@node Integer Basics
@section Integer Basics

  The range of values for an integer depends on the machine.  The
37
minimum range is @minus{}536870912 to 536870911 (30 bits; i.e.,
Glenn Morris's avatar
Glenn Morris committed
38
@ifnottex
39
-2**29
Glenn Morris's avatar
Glenn Morris committed
40 41
@end ifnottex
@tex
42
@math{-2^{29}}
Glenn Morris's avatar
Glenn Morris committed
43 44 45
@end tex
to
@ifnottex
46
2**29 @minus{} 1),
Glenn Morris's avatar
Glenn Morris committed
47 48
@end ifnottex
@tex
49
@math{2^{29}-1}),
Glenn Morris's avatar
Glenn Morris committed
50
@end tex
51 52
but many machines provide a wider range.  Many examples in this
chapter assume the minimum integer width of 30 bits.
Glenn Morris's avatar
Glenn Morris committed
53 54 55
@cindex overflow

  The Lisp reader reads an integer as a sequence of digits with optional
56 57
initial sign and optional final period.  An integer that is out of the
Emacs range is treated as a floating-point number.
Glenn Morris's avatar
Glenn Morris committed
58 59 60 61 62 63

@example
 1               ; @r{The integer 1.}
 1.              ; @r{The integer 1.}
+1               ; @r{Also the integer 1.}
-1               ; @r{The integer @minus{}1.}
64
 1073741825      ; @r{The floating point number 1073741825.0.}
Glenn Morris's avatar
Glenn Morris committed
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
 0               ; @r{The integer 0.}
-0               ; @r{The integer 0.}
@end example

@cindex integers in specific radix
@cindex radix for reading an integer
@cindex base for reading an integer
@cindex hex numbers
@cindex octal numbers
@cindex reading numbers in hex, octal, and binary
  The syntax for integers in bases other than 10 uses @samp{#}
followed by a letter that specifies the radix: @samp{b} for binary,
@samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
specify radix @var{radix}.  Case is not significant for the letter
that specifies the radix.  Thus, @samp{#b@var{integer}} reads
@var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
@var{integer} in radix @var{radix}.  Allowed values of @var{radix} run
from 2 to 36.  For example:

@example
#b101100 @result{} 44
#o54 @result{} 44
#x2c @result{} 44
#24r1k @result{} 44
@end example

  To understand how various functions work on integers, especially the
bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
view the numbers in their binary form.

95
  In 30-bit binary, the decimal integer 5 looks like this:
Glenn Morris's avatar
Glenn Morris committed
96 97

@example
98
0000...000101 (30 bits total)
Glenn Morris's avatar
Glenn Morris committed
99 100 101
@end example

@noindent
102 103 104
(The @samp{...} stands for enough bits to fill out a 30-bit word; in
this case, @samp{...} stands for twenty 0 bits.  Later examples also
use the @samp{...} notation to make binary integers easier to read.)
Glenn Morris's avatar
Glenn Morris committed
105 106 107 108

  The integer @minus{}1 looks like this:

@example
109
1111...111111 (30 bits total)
Glenn Morris's avatar
Glenn Morris committed
110 111 112 113
@end example

@noindent
@cindex two's complement
114
@minus{}1 is represented as 30 ones.  (This is called @dfn{two's
Glenn Morris's avatar
Glenn Morris committed
115 116 117 118 119 120 121
complement} notation.)

  The negative integer, @minus{}5, is creating by subtracting 4 from
@minus{}1.  In binary, the decimal integer 4 is 100.  Consequently,
@minus{}5 looks like this:

@example
122
1111...111011 (30 bits total)
Glenn Morris's avatar
Glenn Morris committed
123 124
@end example

125 126
  In this implementation, the largest 30-bit binary integer value is
536,870,911 in decimal.  In binary, it looks like this:
Glenn Morris's avatar
Glenn Morris committed
127 128

@example
129
0111...111111 (30 bits total)
Glenn Morris's avatar
Glenn Morris committed
130 131 132
@end example

  Since the arithmetic functions do not check whether integers go
133 134
outside their range, when you add 1 to 536,870,911, the value is the
negative integer @minus{}536,870,912:
Glenn Morris's avatar
Glenn Morris committed
135 136

@example
137 138
(+ 1 536870911)
     @result{} -536870912
139
     @result{} 1000...000000 (30 bits total)
Glenn Morris's avatar
Glenn Morris committed
140 141 142 143 144 145 146 147
@end example

  Many of the functions described in this chapter accept markers for
arguments in place of numbers.  (@xref{Markers}.)  Since the actual
arguments to such functions may be either numbers or markers, we often
give these arguments the name @var{number-or-marker}.  When the argument
value is a marker, its position value is used and its buffer is ignored.

148 149
@cindex largest Lisp integer number
@cindex maximum Lisp integer number
Glenn Morris's avatar
Glenn Morris committed
150 151 152 153 154
@defvar most-positive-fixnum
The value of this variable is the largest integer that Emacs Lisp
can handle.
@end defvar

155 156
@cindex smallest Lisp integer number
@cindex minimum Lisp integer number
Glenn Morris's avatar
Glenn Morris committed
157 158 159 160 161
@defvar most-negative-fixnum
The value of this variable is the smallest integer that Emacs Lisp can
handle.  It is negative.
@end defvar

162 163 164
  In Emacs Lisp, text characters are represented by integers.  Any
integer between zero and the value of @code{max-char}, inclusive, is
considered to be valid as a character.  @xref{String Basics}.
165

Glenn Morris's avatar
Glenn Morris committed
166 167 168
@node Float Basics
@section Floating Point Basics

Chong Yidong's avatar
Chong Yidong committed
169
@cindex @acronym{IEEE} floating point
Glenn Morris's avatar
Glenn Morris committed
170 171 172
  Floating point numbers are useful for representing numbers that are
not integral.  The precise range of floating point numbers is
machine-specific; it is the same as the range of the C data type
Chong Yidong's avatar
Chong Yidong committed
173
@code{double} on the machine you are using.  Emacs uses the
174 175
@acronym{IEEE} floating point standard, which is supported by all
modern computers.
Glenn Morris's avatar
Glenn Morris committed
176

Chong Yidong's avatar
Chong Yidong committed
177
  The read syntax for floating point numbers requires either a decimal
Glenn Morris's avatar
Glenn Morris committed
178 179 180
point (with at least one digit following), an exponent, or both.  For
example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
@samp{.15e4} are five ways of writing a floating point number whose
Chong Yidong's avatar
Chong Yidong committed
181 182 183 184 185 186
value is 1500.  They are all equivalent.  You can also use a minus
sign to write negative floating point numbers, as in @samp{-1.0}.

  Emacs Lisp treats @code{-0.0} as equal to ordinary zero (with
respect to @code{equal} and @code{=}), even though the two are
distinguishable in the @acronym{IEEE} floating point standard.
Glenn Morris's avatar
Glenn Morris committed
187 188 189 190 191

@cindex positive infinity
@cindex negative infinity
@cindex infinity
@cindex NaN
Chong Yidong's avatar
Chong Yidong committed
192 193 194 195
  The @acronym{IEEE} floating point standard supports positive
infinity and negative infinity as floating point values.  It also
provides for a class of values called NaN or ``not-a-number'';
numerical functions return such values in cases where there is no
196
correct answer.  For example, @code{(/ 0.0 0.0)} returns a NaN@.  (NaN
Chong Yidong's avatar
Chong Yidong committed
197 198
values can also carry a sign, but for practical purposes there's no
significant difference between different NaN values in Emacs Lisp.)
199 200 201 202 203 204 205 206

When a function is documented to return a NaN, it returns an
implementation-defined value when Emacs is running on one of the
now-rare platforms that do not use @acronym{IEEE} floating point.  For
example, @code{(log -1.0)} typically returns a NaN, but on
non-@acronym{IEEE} platforms it returns an implementation-defined
value.

Chong Yidong's avatar
Chong Yidong committed
207
Here are the read syntaxes for these special floating point values:
Glenn Morris's avatar
Glenn Morris committed
208 209 210 211 212 213

@table @asis
@item positive infinity
@samp{1.0e+INF}
@item negative infinity
@samp{-1.0e+INF}
214
@item Not-a-number
Glenn Morris's avatar
Glenn Morris committed
215 216 217
@samp{0.0e+NaN} or @samp{-0.0e+NaN}.
@end table

Chong Yidong's avatar
Chong Yidong committed
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
@defun isnan number
This predicate tests whether its argument is NaN, and returns @code{t}
if so, @code{nil} otherwise.  The argument must be a number.
@end defun

  The following functions are specialized for handling floating point
numbers:

@defun frexp x
This function returns a cons cell @code{(@var{sig} . @var{exp})},
where @var{sig} and @var{exp} are respectively the significand and
exponent of the floating point number @var{x}:

@smallexample
@var{x} = @var{sig} * 2^@var{exp}
@end smallexample

@var{sig} is a floating point number between 0.5 (inclusive) and 1.0
(exclusive).  If @var{x} is zero, the return value is @code{(0 . 0)}.
@end defun
Glenn Morris's avatar
Glenn Morris committed
238

Chong Yidong's avatar
Chong Yidong committed
239 240 241 242
@defun ldexp sig &optional exp
This function returns a floating point number corresponding to the
significand @var{sig} and exponent @var{exp}.
@end defun
Glenn Morris's avatar
Glenn Morris committed
243

Chong Yidong's avatar
Chong Yidong committed
244 245 246 247 248
@defun copysign x1 x2
This function copies the sign of @var{x2} to the value of @var{x1},
and returns the result.  @var{x1} and @var{x2} must be floating point
numbers.
@end defun
Glenn Morris's avatar
Glenn Morris committed
249 250 251

@defun logb number
This function returns the binary exponent of @var{number}.  More
252
precisely, the value is the logarithm of |@var{number}| base 2, rounded
Glenn Morris's avatar
Glenn Morris committed
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
down to an integer.

@example
(logb 10)
     @result{} 3
(logb 10.0e20)
     @result{} 69
@end example
@end defun

@node Predicates on Numbers
@section Type Predicates for Numbers
@cindex predicates for numbers

  The functions in this section test for numbers, or for a specific
type of number.  The functions @code{integerp} and @code{floatp} can
take any type of Lisp object as argument (they would not be of much
use otherwise), but the @code{zerop} predicate requires a number as
its argument.  See also @code{integer-or-marker-p} and
@code{number-or-marker-p}, in @ref{Predicates on Markers}.

@defun floatp object
This predicate tests whether its argument is a floating point
number and returns @code{t} if so, @code{nil} otherwise.
@end defun

@defun integerp object
This predicate tests whether its argument is an integer, and returns
@code{t} if so, @code{nil} otherwise.
@end defun

@defun numberp object
This predicate tests whether its argument is a number (either integer or
floating point), and returns @code{t} if so, @code{nil} otherwise.
@end defun

289
@defun natnump object
Glenn Morris's avatar
Glenn Morris committed
290
@cindex natural numbers
Paul Eggert's avatar
Paul Eggert committed
291
This predicate (whose name comes from the phrase ``natural number'')
292 293 294
tests to see whether its argument is a nonnegative integer, and
returns @code{t} if so, @code{nil} otherwise.  0 is considered
non-negative.
Glenn Morris's avatar
Glenn Morris committed
295

296 297
@findex wholenump number
This is a synonym for @code{natnump}.
Glenn Morris's avatar
Glenn Morris committed
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
@end defun

@defun zerop number
This predicate tests whether its argument is zero, and returns @code{t}
if so, @code{nil} otherwise.  The argument must be a number.

@code{(zerop x)} is equivalent to @code{(= x 0)}.
@end defun

@node Comparison of Numbers
@section Comparison of Numbers
@cindex number comparison
@cindex comparing numbers

  To test numbers for numerical equality, you should normally use
@code{=}, not @code{eq}.  There can be many distinct floating point
number objects with the same numeric value.  If you use @code{eq} to
compare them, then you test whether two values are the same
@emph{object}.  By contrast, @code{=} compares only the numeric values
of the objects.

319
  In Emacs Lisp, each integer value is a unique Lisp object.
Glenn Morris's avatar
Glenn Morris committed
320
Therefore, @code{eq} is equivalent to @code{=} where integers are
321 322 323 324 325 326 327 328
concerned.  It is sometimes convenient to use @code{eq} for comparing
an unknown value with an integer, because @code{eq} does not report an
error if the unknown value is not a number---it accepts arguments of
any type.  By contrast, @code{=} signals an error if the arguments are
not numbers or markers.  However, it is better programming practice to
use @code{=} if you can, even for comparing integers.

  Sometimes it is useful to compare numbers with @code{equal}, which
Glenn Morris's avatar
Glenn Morris committed
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
treats two numbers as equal if they have the same data type (both
integers, or both floating point) and the same value.  By contrast,
@code{=} can treat an integer and a floating point number as equal.
@xref{Equality Predicates}.

  There is another wrinkle: because floating point arithmetic is not
exact, it is often a bad idea to check for equality of two floating
point values.  Usually it is better to test for approximate equality.
Here's a function to do this:

@example
(defvar fuzz-factor 1.0e-6)
(defun approx-equal (x y)
  (or (and (= x 0) (= y 0))
      (< (/ (abs (- x y))
            (max (abs x) (abs y)))
         fuzz-factor)))
@end example

@cindex CL note---integers vrs @code{eq}
@quotation
@b{Common Lisp note:} Comparing numbers in Common Lisp always requires
@code{=} because Common Lisp implements multi-word integers, and two
distinct integer objects can have the same numeric value.  Emacs Lisp
can have just one integer object for any given value because it has a
limited range of integer values.
@end quotation

357 358 359
@defun = number-or-marker &rest number-or-markers
This function tests whether all its arguments are numerically equal,
and returns @code{t} if so, @code{nil} otherwise.
Glenn Morris's avatar
Glenn Morris committed
360 361 362 363 364 365 366 367 368 369 370 371 372 373
@end defun

@defun eql value1 value2
This function acts like @code{eq} except when both arguments are
numbers.  It compares numbers by type and numeric value, so that
@code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
@code{(eql 1 1)} both return @code{t}.
@end defun

@defun /= number-or-marker1 number-or-marker2
This function tests whether its arguments are numerically equal, and
returns @code{t} if they are not, and @code{nil} if they are.
@end defun

374 375 376 377
@defun <  number-or-marker &rest number-or-markers
This function tests whether every argument is strictly less than the
respective next argument.  It returns @code{t} if so, @code{nil}
otherwise.
Glenn Morris's avatar
Glenn Morris committed
378 379
@end defun

380 381 382
@defun <= number-or-marker &rest number-or-markers
This function tests whether every argument is less than or equal to
the respective next argument.  It returns @code{t} if so, @code{nil}
Glenn Morris's avatar
Glenn Morris committed
383 384 385
otherwise.
@end defun

386 387 388
@defun > number-or-marker &rest number-or-markers
This function tests whether every argument is strictly greater than
the respective next argument.  It returns @code{t} if so, @code{nil}
Glenn Morris's avatar
Glenn Morris committed
389 390 391
otherwise.
@end defun

392 393 394
@defun >= number-or-marker &rest number-or-markers
This function tests whether every argument is greater than or equal to
the respective next argument.  It returns @code{t} if so, @code{nil}
Glenn Morris's avatar
Glenn Morris committed
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
otherwise.
@end defun

@defun max number-or-marker &rest numbers-or-markers
This function returns the largest of its arguments.
If any of the arguments is floating-point, the value is returned
as floating point, even if it was given as an integer.

@example
(max 20)
     @result{} 20
(max 1 2.5)
     @result{} 2.5
(max 1 3 2.5)
     @result{} 3.0
@end example
@end defun

@defun min number-or-marker &rest numbers-or-markers
This function returns the smallest of its arguments.
If any of the arguments is floating-point, the value is returned
as floating point, even if it was given as an integer.

@example
(min -4 1)
     @result{} -4
@end example
@end defun

@defun abs number
This function returns the absolute value of @var{number}.
@end defun

@node Numeric Conversions
@section Numeric Conversions
@cindex rounding in conversions
@cindex number conversions
@cindex converting numbers

To convert an integer to floating point, use the function @code{float}.

@defun float number
This returns @var{number} converted to floating point.
If @var{number} is already a floating point number, @code{float} returns
it unchanged.
@end defun

442 443 444 445
  There are four functions to convert floating point numbers to
integers; they differ in how they round.  All accept an argument
@var{number} and an optional argument @var{divisor}.  Both arguments
may be integers or floating point numbers.  @var{divisor} may also be
Glenn Morris's avatar
Glenn Morris committed
446 447 448 449
@code{nil}.  If @var{divisor} is @code{nil} or omitted, these
functions convert @var{number} to an integer, or return it unchanged
if it already is an integer.  If @var{divisor} is non-@code{nil}, they
divide @var{number} by @var{divisor} and convert the result to an
450 451
integer.  integer.  If @var{divisor} is zero (whether integer or
floating-point), Emacs signals an @code{arith-error} error.
Glenn Morris's avatar
Glenn Morris committed
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

@defun truncate number &optional divisor
This returns @var{number}, converted to an integer by rounding towards
zero.

@example
(truncate 1.2)
     @result{} 1
(truncate 1.7)
     @result{} 1
(truncate -1.2)
     @result{} -1
(truncate -1.7)
     @result{} -1
@end example
@end defun

@defun floor number &optional divisor
This returns @var{number}, converted to an integer by rounding downward
(towards negative infinity).

If @var{divisor} is specified, this uses the kind of division
operation that corresponds to @code{mod}, rounding downward.

@example
(floor 1.2)
     @result{} 1
(floor 1.7)
     @result{} 1
(floor -1.2)
     @result{} -2
(floor -1.7)
     @result{} -2
(floor 5.99 3)
     @result{} 1
@end example
@end defun

@defun ceiling number &optional divisor
This returns @var{number}, converted to an integer by rounding upward
(towards positive infinity).

@example
(ceiling 1.2)
     @result{} 2
(ceiling 1.7)
     @result{} 2
(ceiling -1.2)
     @result{} -1
(ceiling -1.7)
     @result{} -1
@end example
@end defun

@defun round number &optional divisor
This returns @var{number}, converted to an integer by rounding towards the
nearest integer.  Rounding a value equidistant between two integers
may choose the integer closer to zero, or it may prefer an even integer,
depending on your machine.

@example
(round 1.2)
     @result{} 1
(round 1.7)
     @result{} 2
(round -1.2)
     @result{} -1
(round -1.7)
     @result{} -2
@end example
@end defun

@node Arithmetic Operations
@section Arithmetic Operations
@cindex arithmetic operations

528 529 530 531 532 533
  Emacs Lisp provides the traditional four arithmetic operations
(addition, subtraction, multiplication, and division), as well as
remainder and modulus functions, and functions to add or subtract 1.
Except for @code{%}, each of these functions accepts both integer and
floating point arguments, and returns a floating point number if any
argument is a floating point number.
Glenn Morris's avatar
Glenn Morris committed
534

535
  It is important to note that in Emacs Lisp, arithmetic functions
536 537
do not check for overflow.  Thus @code{(1+ 536870911)} may evaluate to
@minus{}536870912, depending on your hardware.
Glenn Morris's avatar
Glenn Morris committed
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

@defun 1+ number-or-marker
This function returns @var{number-or-marker} plus 1.
For example,

@example
(setq foo 4)
     @result{} 4
(1+ foo)
     @result{} 5
@end example

This function is not analogous to the C operator @code{++}---it does not
increment a variable.  It just computes a sum.  Thus, if we continue,

@example
foo
     @result{} 4
@end example

If you want to increment the variable, you must use @code{setq},
like this:

@example
(setq foo (1+ foo))
     @result{} 5
@end example
@end defun

@defun 1- number-or-marker
This function returns @var{number-or-marker} minus 1.
@end defun

@defun + &rest numbers-or-markers
This function adds its arguments together.  When given no arguments,
@code{+} returns 0.

@example
(+)
     @result{} 0
(+ 1)
     @result{} 1
(+ 1 2 3 4)
     @result{} 10
@end example
@end defun

@defun - &optional number-or-marker &rest more-numbers-or-markers
The @code{-} function serves two purposes: negation and subtraction.
When @code{-} has a single argument, the value is the negative of the
argument.  When there are multiple arguments, @code{-} subtracts each of
the @var{more-numbers-or-markers} from @var{number-or-marker},
cumulatively.  If there are no arguments, the result is 0.

@example
(- 10 1 2 3 4)
     @result{} 0
(- 10)
     @result{} -10
(-)
     @result{} 0
@end example
@end defun

@defun * &rest numbers-or-markers
This function multiplies its arguments together, and returns the
product.  When given no arguments, @code{*} returns 1.

@example
(*)
     @result{} 1
(* 1)
     @result{} 1
(* 1 2 3 4)
     @result{} 24
@end example
@end defun

@defun / dividend divisor &rest divisors
This function divides @var{dividend} by @var{divisor} and returns the
quotient.  If there are additional arguments @var{divisors}, then it
divides @var{dividend} by each divisor in turn.  Each argument may be a
number or a marker.

622 623 624 625 626 627
If all the arguments are integers, the result is an integer, obtained
by rounding the quotient towards zero after each division.
(Hypothetically, some machines may have different rounding behavior
for negative arguments, because @code{/} is implemented using the C
division operator, which permits machine-dependent rounding; but this
does not happen in practice.)
Glenn Morris's avatar
Glenn Morris committed
628 629 630 631 632 633

@example
@group
(/ 6 2)
     @result{} 3
@end group
634
@group
Glenn Morris's avatar
Glenn Morris committed
635 636
(/ 5 2)
     @result{} 2
637 638
@end group
@group
Glenn Morris's avatar
Glenn Morris committed
639 640
(/ 5.0 2)
     @result{} 2.5
641 642
@end group
@group
Glenn Morris's avatar
Glenn Morris committed
643 644
(/ 5 2.0)
     @result{} 2.5
645 646
@end group
@group
Glenn Morris's avatar
Glenn Morris committed
647 648
(/ 5.0 2.0)
     @result{} 2.5
649 650
@end group
@group
Glenn Morris's avatar
Glenn Morris committed
651 652
(/ 25 3 2)
     @result{} 4
653
@end group
Glenn Morris's avatar
Glenn Morris committed
654 655
@group
(/ -17 6)
656
     @result{} -2
Glenn Morris's avatar
Glenn Morris committed
657 658
@end group
@end example
659 660 661 662 663 664

@cindex @code{arith-error} in division
If you divide an integer by the integer 0, Emacs signals an
@code{arith-error} error (@pxref{Errors}).  If you divide a floating
point number by 0, or divide by the floating point number 0.0, the
result is either positive or negative infinity (@pxref{Float Basics}).
Glenn Morris's avatar
Glenn Morris committed
665 666 667 668 669 670 671
@end defun

@defun % dividend divisor
@cindex remainder
This function returns the integer remainder after division of @var{dividend}
by @var{divisor}.  The arguments must be integers or markers.

672 673 674 675 676 677 678 679
For any two integers @var{dividend} and @var{divisor},

@example
@group
(+ (% @var{dividend} @var{divisor})
   (* (/ @var{dividend} @var{divisor}) @var{divisor}))
@end group
@end example
Glenn Morris's avatar
Glenn Morris committed
680

681 682 683
@noindent
always equals @var{dividend}.  If @var{divisor} is zero, Emacs signals
an @code{arith-error} error.
Glenn Morris's avatar
Glenn Morris committed
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

@example
(% 9 4)
     @result{} 1
(% -9 4)
     @result{} -1
(% 9 -4)
     @result{} 1
(% -9 -4)
     @result{} -1
@end example
@end defun

@defun mod dividend divisor
@cindex modulus
This function returns the value of @var{dividend} modulo @var{divisor};
in other words, the remainder after division of @var{dividend}
by @var{divisor}, but with the same sign as @var{divisor}.
The arguments must be numbers or markers.

704 705 706
Unlike @code{%}, @code{mod} permits floating point arguments; it
rounds the quotient downward (towards minus infinity) to an integer,
and uses that quotient to compute the remainder.
Glenn Morris's avatar
Glenn Morris committed
707

708 709
If @var{divisor} is zero, @code{mod} signals an @code{arith-error}
error if both arguments are integers, and returns a NaN otherwise.
Glenn Morris's avatar
Glenn Morris committed
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

@example
@group
(mod 9 4)
     @result{} 1
@end group
@group
(mod -9 4)
     @result{} 3
@end group
@group
(mod 9 -4)
     @result{} -3
@end group
@group
(mod -9 -4)
     @result{} -1
@end group
@group
(mod 5.5 2.5)
     @result{} .5
@end group
@end example

For any two numbers @var{dividend} and @var{divisor},

@example
@group
(+ (mod @var{dividend} @var{divisor})
   (* (floor @var{dividend} @var{divisor}) @var{divisor}))
@end group
@end example

@noindent
always equals @var{dividend}, subject to rounding error if either
argument is floating point.  For @code{floor}, see @ref{Numeric
Conversions}.
@end defun

@node Rounding Operations
@section Rounding Operations
@cindex rounding without conversion

The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
@code{ftruncate} take a floating point argument and return a floating
point result whose value is a nearby integer.  @code{ffloor} returns the
nearest integer below; @code{fceiling}, the nearest integer above;
@code{ftruncate}, the nearest integer in the direction towards zero;
@code{fround}, the nearest integer.

@defun ffloor float
This function rounds @var{float} to the next lower integral value, and
returns that value as a floating point number.
@end defun

@defun fceiling float
This function rounds @var{float} to the next higher integral value, and
returns that value as a floating point number.
@end defun

@defun ftruncate float
This function rounds @var{float} towards zero to an integral value, and
returns that value as a floating point number.
@end defun

@defun fround float
This function rounds @var{float} to the nearest integral value,
and returns that value as a floating point number.
@end defun

@node Bitwise Operations
@section Bitwise Operations on Integers
@cindex bitwise arithmetic
@cindex logical arithmetic

  In a computer, an integer is represented as a binary number, a
sequence of @dfn{bits} (digits which are either zero or one).  A bitwise
operation acts on the individual bits of such a sequence.  For example,
@dfn{shifting} moves the whole sequence left or right one or more places,
789
reproducing the same pattern ``moved over''.
Glenn Morris's avatar
Glenn Morris committed
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

  The bitwise operations in Emacs Lisp apply only to integers.

@defun lsh integer1 count
@cindex logical shift
@code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
bits in @var{integer1} to the left @var{count} places, or to the right
if @var{count} is negative, bringing zeros into the vacated bits.  If
@var{count} is negative, @code{lsh} shifts zeros into the leftmost
(most-significant) bit, producing a positive result even if
@var{integer1} is negative.  Contrast this with @code{ash}, below.

Here are two examples of @code{lsh}, shifting a pattern of bits one
place to the left.  We show only the low-order eight bits of the binary
pattern; the rest are all zero.

@example
@group
(lsh 5 1)
     @result{} 10
;; @r{Decimal 5 becomes decimal 10.}
00000101 @result{} 00001010

(lsh 7 1)
     @result{} 14
;; @r{Decimal 7 becomes decimal 14.}
00000111 @result{} 00001110
@end group
@end example

@noindent
As the examples illustrate, shifting the pattern of bits one place to
the left produces a number that is twice the value of the previous
number.

Shifting a pattern of bits two places to the left produces results
like this (with 8-bit binary numbers):

@example
@group
(lsh 3 2)
     @result{} 12
;; @r{Decimal 3 becomes decimal 12.}
00000011 @result{} 00001100
@end group
@end example

On the other hand, shifting one place to the right looks like this:

@example
@group
(lsh 6 -1)
     @result{} 3
;; @r{Decimal 6 becomes decimal 3.}
00000110 @result{} 00000011
@end group

@group
(lsh 5 -1)
     @result{} 2
;; @r{Decimal 5 becomes decimal 2.}
00000101 @result{} 00000010
@end group
@end example

@noindent
As the example illustrates, shifting one place to the right divides the
value of a positive integer by two, rounding downward.

859
The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
Glenn Morris's avatar
Glenn Morris committed
860 861
not check for overflow, so shifting left can discard significant bits
and change the sign of the number.  For example, left shifting
862
536,870,911 produces @minus{}2 in the 30-bit implementation:
Glenn Morris's avatar
Glenn Morris committed
863 864

@example
865
(lsh 536870911 1)          ; @r{left shift}
Glenn Morris's avatar
Glenn Morris committed
866 867 868
     @result{} -2
@end example

869
In binary, the argument looks like this:
Glenn Morris's avatar
Glenn Morris committed
870 871 872

@example
@group
873
;; @r{Decimal 536,870,911}
874
0111...111111 (30 bits total)
Glenn Morris's avatar
Glenn Morris committed
875 876 877 878 879 880 881 882 883
@end group
@end example

@noindent
which becomes the following when left shifted:

@example
@group
;; @r{Decimal @minus{}2}
884
1111...111110 (30 bits total)
Glenn Morris's avatar
Glenn Morris committed
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
@end group
@end example
@end defun

@defun ash integer1 count
@cindex arithmetic shift
@code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
to the left @var{count} places, or to the right if @var{count}
is negative.

@code{ash} gives the same results as @code{lsh} except when
@var{integer1} and @var{count} are both negative.  In that case,
@code{ash} puts ones in the empty bit positions on the left, while
@code{lsh} puts zeros in those bit positions.

Thus, with @code{ash}, shifting the pattern of bits one place to the right
looks like this:

@example
@group
(ash -6 -1) @result{} -3
;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
907
1111...111010 (30 bits total)
Glenn Morris's avatar
Glenn Morris committed
908
     @result{}
909
1111...111101 (30 bits total)
Glenn Morris's avatar
Glenn Morris committed
910 911 912 913 914 915 916 917
@end group
@end example

In contrast, shifting the pattern of bits one place to the right with
@code{lsh} looks like this:

@example
@group
918 919
(lsh -6 -1) @result{} 536870909
;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
920
1111...111010 (30 bits total)
Glenn Morris's avatar
Glenn Morris committed
921
     @result{}
922
0111...111101 (30 bits total)
Glenn Morris's avatar
Glenn Morris committed
923 924 925 926 927 928 929 930 931
@end group
@end example

Here are other examples:

@c !!! Check if lined up in smallbook format!  XDVI shows problem
@c     with smallbook but not with regular book! --rjc 16mar92
@smallexample
@group
932
                   ;  @r{       30-bit binary values}
Glenn Morris's avatar
Glenn Morris committed
933

Paul Eggert's avatar
Paul Eggert committed
934 935
(lsh 5 2)          ;   5  =  @r{0000...000101}
     @result{} 20         ;      =  @r{0000...010100}
Glenn Morris's avatar
Glenn Morris committed
936 937 938 939
@end group
@group
(ash 5 2)
     @result{} 20
Paul Eggert's avatar
Paul Eggert committed
940 941
(lsh -5 2)         ;  -5  =  @r{1111...111011}
     @result{} -20        ;      =  @r{1111...101100}
Glenn Morris's avatar
Glenn Morris committed
942 943 944 945
(ash -5 2)
     @result{} -20
@end group
@group
Paul Eggert's avatar
Paul Eggert committed
946 947
(lsh 5 -2)         ;   5  =  @r{0000...000101}
     @result{} 1          ;      =  @r{0000...000001}
Glenn Morris's avatar
Glenn Morris committed
948 949 950 951 952 953
@end group
@group
(ash 5 -2)
     @result{} 1
@end group
@group
Paul Eggert's avatar
Paul Eggert committed
954
(lsh -5 -2)        ;  -5  =  @r{1111...111011}
955
     @result{} 268435454
Paul Eggert's avatar
Paul Eggert committed
956
                   ;      =  @r{0011...111110}
Glenn Morris's avatar
Glenn Morris committed
957 958
@end group
@group
Paul Eggert's avatar
Paul Eggert committed
959 960
(ash -5 -2)        ;  -5  =  @r{1111...111011}
     @result{} -2         ;      =  @r{1111...111110}
Glenn Morris's avatar
Glenn Morris committed
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
@end group
@end smallexample
@end defun

@defun logand &rest ints-or-markers
This function returns the ``logical and'' of the arguments: the
@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
set in all the arguments.  (``Set'' means that the value of the bit is 1
rather than 0.)

For example, using 4-bit binary numbers, the ``logical and'' of 13 and
12 is 12: 1101 combined with 1100 produces 1100.
In both the binary numbers, the leftmost two bits are set (i.e., they
are 1's), so the leftmost two bits of the returned value are set.
However, for the rightmost two bits, each is zero in at least one of
the arguments, so the rightmost two bits of the returned value are 0's.

@noindent
Therefore,

@example
@group
(logand 13 12)
     @result{} 12
@end group
@end example

If @code{logand} is not passed any argument, it returns a value of
@minus{}1.  This number is an identity element for @code{logand}
because its binary representation consists entirely of ones.  If
@code{logand} is passed just one argument, it returns that argument.

@smallexample
@group
995
                   ; @r{       30-bit binary values}
Glenn Morris's avatar
Glenn Morris committed
996

Paul Eggert's avatar
Paul Eggert committed
997 998 999
(logand 14 13)     ; 14  =  @r{0000...001110}
                   ; 13  =  @r{0000...001101}
     @result{} 12         ; 12  =  @r{0000...001100}
Glenn Morris's avatar
Glenn Morris committed
1000 1001 1002
@end group

@group
Paul Eggert's avatar
Paul Eggert committed
1003 1004 1005 1006
(logand 14 13 4)   ; 14  =  @r{0000...001110}
                   ; 13  =  @r{0000...001101}
                   ;  4  =  @r{0000...000100}
     @result{} 4          ;  4  =  @r{0000...000100}
Glenn Morris's avatar
Glenn Morris committed
1007 1008 1009 1010
@end group

@group
(logand)
Paul Eggert's avatar
Paul Eggert committed
1011
     @result{} -1         ; -1  =  @r{1111...111111}
Glenn Morris's avatar
Glenn Morris committed
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
@end group
@end smallexample
@end defun

@defun logior &rest ints-or-markers
This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
is set in the result if, and only if, the @var{n}th bit is set in at least
one of the arguments.  If there are no arguments, the result is zero,
which is an identity element for this operation.  If @code{logior} is
passed just one argument, it returns that argument.

@smallexample
@group
1025
                   ; @r{       30-bit binary values}
Glenn Morris's avatar
Glenn Morris committed
1026

Paul Eggert's avatar
Paul Eggert committed
1027 1028 1029
(logior 12 5)      ; 12  =  @r{0000...001100}
                   ;  5  =  @r{0000...000101}
     @result{} 13         ; 13  =  @r{0000...001101}
Glenn Morris's avatar
Glenn Morris committed
1030 1031 1032
@end group

@group
Paul Eggert's avatar
Paul Eggert committed
1033 1034 1035 1036
(logior 12 5 7)    ; 12  =  @r{0000...001100}
                   ;  5  =  @r{0000...000101}
                   ;  7  =  @r{0000...000111}
     @result{} 15         ; 15  =  @r{0000...001111}
Glenn Morris's avatar
Glenn Morris committed
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
@end group
@end smallexample
@end defun

@defun logxor &rest ints-or-markers
This function returns the ``exclusive or'' of its arguments: the
@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
set in an odd number of the arguments.  If there are no arguments, the
result is 0, which is an identity element for this operation.  If
@code{logxor} is passed just one argument, it returns that argument.

@smallexample
@group
1050
                   ; @r{       30-bit binary values}
Glenn Morris's avatar
Glenn Morris committed
1051

Paul Eggert's avatar
Paul Eggert committed
1052 1053 1054
(logxor 12 5)      ; 12  =  @r{0000...001100}
                   ;  5  =  @r{0000...000101}
     @result{} 9          ;  9  =  @r{0000...001001}
Glenn Morris's avatar
Glenn Morris committed
1055 1056 1057
@end group

@group
Paul Eggert's avatar
Paul Eggert committed
1058 1059 1060 1061
(logxor 12 5 7)    ; 12  =  @r{0000...001100}
                   ;  5  =  @r{0000...000101}
                   ;  7  =  @r{0000...000111}
     @result{} 14         ; 14  =  @r{0000...001110}
Glenn Morris's avatar
Glenn Morris committed
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
@end group
@end smallexample
@end defun

@defun lognot integer
This function returns the logical complement of its argument: the @var{n}th
bit is one in the result if, and only if, the @var{n}th bit is zero in
@var{integer}, and vice-versa.

@example
(lognot 5)
     @result{} -6
1074
;;  5  =  @r{0000...000101} (30 bits total)
Glenn Morris's avatar
Glenn Morris committed
1075
;; @r{becomes}
1076
;; -6  =  @r{1111...111010} (30 bits total)
Glenn Morris's avatar
Glenn Morris committed
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
@end example
@end defun

@node Math Functions
@section Standard Mathematical Functions
@cindex transcendental functions
@cindex mathematical functions
@cindex floating-point functions

  These mathematical functions allow integers as well as floating point
numbers as arguments.

@defun sin arg
@defunx cos arg
@defunx tan arg
1092 1093
These are the basic trigonometric functions, with argument @var{arg}
measured in radians.
Glenn Morris's avatar
Glenn Morris committed
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
@end defun

@defun asin arg
The value of @code{(asin @var{arg})} is a number between
@ifnottex
@minus{}pi/2
@end ifnottex
@tex
@math{-\pi/2}
@end tex
and
@ifnottex
pi/2
@end ifnottex
@tex
@math{\pi/2}
@end tex
1111 1112
(inclusive) whose sine is @var{arg}.  If @var{arg} is out of range
(outside [@minus{}1, 1]), @code{asin} returns a NaN.
Glenn Morris's avatar
Glenn Morris committed
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
@end defun

@defun acos arg
The value of @code{(acos @var{arg})} is a number between 0 and
@ifnottex
pi
@end ifnottex
@tex
@math{\pi}
@end tex
1123 1124
(inclusive) whose cosine is @var{arg}.  If @var{arg} is out of range
(outside [@minus{}1, 1]), @code{acos} returns a NaN.
Glenn Morris's avatar
Glenn Morris committed
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
@end defun

@defun atan y &optional x
The value of @code{(atan @var{y})} is a number between
@ifnottex
@minus{}pi/2
@end ifnottex
@tex
@math{-\pi/2}
@end tex
and
@ifnottex
pi/2
@end ifnottex
@tex
@math{\pi/2}
@end tex
(exclusive) whose tangent is @var{y}.  If the optional second
argument @var{x} is given, the value of @code{(atan y x)} is the
angle in radians between the vector @code{[@var{x}, @var{y}]} and the
@code{X} axis.
@end defun

@defun exp arg
Chong Yidong's avatar
Chong Yidong committed
1149 1150
This is the exponential function; it returns @math{e} to the power
@var{arg}.
Glenn Morris's avatar
Glenn Morris committed
1151 1152 1153
@end defun

@defun log arg &optional base
Chong Yidong's avatar
Chong Yidong committed
1154 1155
This function returns the logarithm of @var{arg}, with base
@var{base}.  If you don't specify @var{base}, the natural base
1156 1157
@math{e} is used.  If @var{arg} or @var{base} is negative, @code{log}
returns a NaN.
Glenn Morris's avatar
Glenn Morris committed
1158 1159 1160 1161
@end defun

@defun expt x y
This function returns @var{x} raised to power @var{y}.  If both
1162 1163
arguments are integers and @var{y} is positive, the result is an
integer; in this case, overflow causes truncation, so watch out.
1164 1165
If @var{x} is a finite negative number and @var{y} is a finite
non-integer, @code{expt} returns a NaN.
Glenn Morris's avatar
Glenn Morris committed
1166 1167 1168 1169
@end defun

@defun sqrt arg
This returns the square root of @var{arg}.  If @var{arg} is negative,
1170
@code{sqrt} returns a NaN.
Glenn Morris's avatar
Glenn Morris committed
1171 1172
@end defun

Chong Yidong's avatar
Chong Yidong committed
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
In addition, Emacs defines the following common mathematical
constants:

@defvar float-e
The mathematical constant @math{e} (2.71828@dots{}).
@end defvar

@defvar float-pi
The mathematical constant @math{pi} (3.14159@dots{}).
@end defvar

Glenn Morris's avatar
Glenn Morris committed
1184 1185 1186 1187
@node Random Numbers
@section Random Numbers
@cindex random numbers

1188 1189 1190 1191 1192 1193
  A deterministic computer program cannot generate true random
numbers.  For most purposes, @dfn{pseudo-random numbers} suffice.  A
series of pseudo-random numbers is generated in a deterministic
fashion.  The numbers are not truly random, but they have certain
properties that mimic a random series.  For example, all possible
values occur equally often in a pseudo-random series.
Glenn Morris's avatar
Glenn Morris committed
1194

1195 1196 1197 1198 1199
  Pseudo-random numbers are generated from a ``seed''.  Starting from
any given seed, the @code{random} function always generates the same
sequence of numbers.  By default, Emacs initializes the random seed at
startup, in such a way that the sequence of values of @code{random}
(with overwhelming likelihood) differs in each Emacs run.
1200

1201
  Sometimes you want the random number sequence to be repeatable.  For
1202 1203 1204 1205 1206 1207
example, when debugging a program whose behavior depends on the random
number sequence, it is helpful to get the same behavior in each
program run.  To make the sequence repeat, execute @code{(random "")}.
This sets the seed to a constant value for your particular Emacs
executable (though it may differ for other Emacs builds).  You can use
other strings to choose various seed values.
Glenn Morris's avatar
Glenn Morris committed
1208 1209 1210 1211 1212 1213

@defun random &optional limit
This function returns a pseudo-random integer.  Repeated calls return a
series of pseudo-random integers.

If @var{limit} is a positive integer, the value is chosen to be
1214
nonnegative and less than @var{limit}.  Otherwise, the value might be
1215
any integer representable in Lisp, i.e., an integer between
1216 1217
@code{most-negative-fixnum} and @code{most-positive-fixnum}
(@pxref{Integer Basics}).
Glenn Morris's avatar
Glenn Morris committed
1218 1219 1220 1221

If @var{limit} is @code{t}, it means to choose a new seed based on the
current time of day and on Emacs's process @acronym{ID} number.

1222 1223 1224
If @var{limit} is a string, it means to choose a new seed based on the
string's contents.

Glenn Morris's avatar
Glenn Morris committed
1225
@end defun