cl-loaddefs.el 40.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
;;; cl-loaddefs.el --- automatically extracted autoloads
;;
;;; Code:


;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
;;;;;;  cl-do-remf cl-set-getf getf get* tailp list-length nreconc
;;;;;;  revappend concatenate subseq cl-float-limits random-state-p
;;;;;;  make-random-state random* signum rem* mod* round* truncate*
;;;;;;  ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
;;;;;;  cl-map-overlays cl-map-intervals cl-map-keymap-recursively
;;;;;;  notevery notany every some mapcon mapcan mapl maplist map
Andreas Schwab's avatar
Update.  
Andreas Schwab committed
13
;;;;;;  cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "53c2b3ede19dac62cff13a37f58cdf9c")
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
;;; Generated autoloads from cl-extra.el

(autoload (quote coerce) "cl-extra" "\
Coerce OBJECT to type TYPE.
TYPE is a Common Lisp type specifier.

\(fn OBJECT TYPE)" nil nil)

(autoload (quote equalp) "cl-extra" "\
Return t if two Lisp objects have similar structures and contents.
This is like `equal', except that it accepts numerically equal
numbers of different types (float vs. integer), and also compares
strings case-insensitively.

\(fn X Y)" nil nil)

(autoload (quote cl-mapcar-many) "cl-extra" "\
Not documented

\(fn CL-FUNC CL-SEQS)" nil nil)

(autoload (quote map) "cl-extra" "\
Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
TYPE is the sequence type to return.

\(fn TYPE FUNCTION SEQUENCE...)" nil nil)

(autoload (quote maplist) "cl-extra" "\
Map FUNCTION to each sublist of LIST or LISTs.
Like `mapcar', except applies to lists and their cdr's rather than to
the elements themselves.

\(fn FUNCTION LIST...)" nil nil)

(autoload (quote mapl) "cl-extra" "\
Like `maplist', but does not accumulate values returned by the function.

\(fn FUNCTION LIST...)" nil nil)

(autoload (quote mapcan) "cl-extra" "\
Like `mapcar', but nconc's together the values returned by the function.

\(fn FUNCTION SEQUENCE...)" nil nil)

(autoload (quote mapcon) "cl-extra" "\
Like `maplist', but nconc's together the values returned by the function.

\(fn FUNCTION LIST...)" nil nil)

(autoload (quote some) "cl-extra" "\
Return true if PREDICATE is true of any element of SEQ or SEQs.
If so, return the true (non-nil) value returned by PREDICATE.

\(fn PREDICATE SEQ...)" nil nil)

(autoload (quote every) "cl-extra" "\
Return true if PREDICATE is true of every element of SEQ or SEQs.

\(fn PREDICATE SEQ...)" nil nil)

(autoload (quote notany) "cl-extra" "\
Return true if PREDICATE is false of every element of SEQ or SEQs.

\(fn PREDICATE SEQ...)" nil nil)

(autoload (quote notevery) "cl-extra" "\
Return true if PREDICATE is false of some element of SEQ or SEQs.

\(fn PREDICATE SEQ...)" nil nil)

(defalias (quote cl-map-keymap) (quote map-keymap))

(autoload (quote cl-map-keymap-recursively) "cl-extra" "\
Not documented

\(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)

(autoload (quote cl-map-intervals) "cl-extra" "\
Not documented

\(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)

(autoload (quote cl-map-overlays) "cl-extra" "\
Not documented

\(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)

(autoload (quote cl-set-frame-visible-p) "cl-extra" "\
Not documented

\(fn FRAME VAL)" nil nil)

(autoload (quote cl-progv-before) "cl-extra" "\
Not documented

\(fn SYMS VALUES)" nil nil)

(autoload (quote gcd) "cl-extra" "\
Return the greatest common divisor of the arguments.

\(fn &rest ARGS)" nil nil)

(autoload (quote lcm) "cl-extra" "\
Return the least common multiple of the arguments.

\(fn &rest ARGS)" nil nil)

(autoload (quote isqrt) "cl-extra" "\
Return the integer square root of the argument.

\(fn X)" nil nil)

(autoload (quote floor*) "cl-extra" "\
Return a list of the floor of X and the fractional part of X.
With two arguments, return floor and remainder of their quotient.

\(fn X &optional Y)" nil nil)

(autoload (quote ceiling*) "cl-extra" "\
Return a list of the ceiling of X and the fractional part of X.
With two arguments, return ceiling and remainder of their quotient.

\(fn X &optional Y)" nil nil)

(autoload (quote truncate*) "cl-extra" "\
Return a list of the integer part of X and the fractional part of X.
With two arguments, return truncation and remainder of their quotient.

\(fn X &optional Y)" nil nil)

(autoload (quote round*) "cl-extra" "\
Return a list of X rounded to the nearest integer and the remainder.
With two arguments, return rounding and remainder of their quotient.

\(fn X &optional Y)" nil nil)

(autoload (quote mod*) "cl-extra" "\
The remainder of X divided by Y, with the same sign as Y.

\(fn X Y)" nil nil)

(autoload (quote rem*) "cl-extra" "\
The remainder of X divided by Y, with the same sign as X.

\(fn X Y)" nil nil)

(autoload (quote signum) "cl-extra" "\
Return 1 if X is positive, -1 if negative, 0 if zero.

\(fn X)" nil nil)

(autoload (quote random*) "cl-extra" "\
Return a random nonnegative number less than LIM, an integer or float.
Optional second arg STATE is a random-state object.

\(fn LIM &optional STATE)" nil nil)

(autoload (quote make-random-state) "cl-extra" "\
Return a copy of random-state STATE, or of `*random-state*' if omitted.
If STATE is t, return a new state object seeded from the time of day.

\(fn &optional STATE)" nil nil)

(autoload (quote random-state-p) "cl-extra" "\
Return t if OBJECT is a random-state object.

\(fn OBJECT)" nil nil)

(autoload (quote cl-float-limits) "cl-extra" "\
Not documented

\(fn)" nil nil)

(autoload (quote subseq) "cl-extra" "\
Return the subsequence of SEQ from START to END.
If END is omitted, it defaults to the length of the sequence.
If START or END is negative, it counts from the end.

\(fn SEQ START &optional END)" nil nil)

(autoload (quote concatenate) "cl-extra" "\
Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.

\(fn TYPE SEQUENCE...)" nil nil)

(autoload (quote revappend) "cl-extra" "\
Equivalent to (append (reverse X) Y).

\(fn X Y)" nil nil)

(autoload (quote nreconc) "cl-extra" "\
Equivalent to (nconc (nreverse X) Y).

\(fn X Y)" nil nil)

(autoload (quote list-length) "cl-extra" "\
Return the length of list X.  Return nil if list is circular.

\(fn X)" nil nil)

(autoload (quote tailp) "cl-extra" "\
Return true if SUBLIST is a tail of LIST.

\(fn SUBLIST LIST)" nil nil)

(autoload (quote get*) "cl-extra" "\
Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.

\(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)

(autoload (quote getf) "cl-extra" "\
Search PROPLIST for property PROPNAME; return its value or DEFAULT.
PROPLIST is a list of the sort returned by `symbol-plist'.

\(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)

(autoload (quote cl-set-getf) "cl-extra" "\
Not documented

\(fn PLIST TAG VAL)" nil nil)

(autoload (quote cl-do-remf) "cl-extra" "\
Not documented

\(fn PLIST TAG)" nil nil)

(autoload (quote cl-remprop) "cl-extra" "\
Remove from SYMBOL's plist the property PROPNAME and its value.

\(fn SYMBOL PROPNAME)" nil nil)

(defalias (quote remprop) (quote cl-remprop))

(defalias (quote cl-gethash) (quote gethash))

(defalias (quote cl-puthash) (quote puthash))

(defalias (quote cl-remhash) (quote remhash))

(defalias (quote cl-clrhash) (quote clrhash))

(defalias (quote cl-maphash) (quote maphash))

(defalias (quote cl-make-hash-table) (quote make-hash-table))

(defalias (quote cl-hash-table-p) (quote hash-table-p))

(defalias (quote cl-hash-table-count) (quote hash-table-count))

(autoload (quote cl-macroexpand-all) "cl-extra" "\
Expand all macro calls through a Lisp FORM.
This also does some trivial optimizations to make the form prettier.

\(fn FORM &optional ENV)" nil nil)

(autoload (quote cl-prettyexpand) "cl-extra" "\
Not documented

\(fn FORM &optional FULL)" nil nil)

;;;***

;;;### (autoloads (compiler-macroexpand define-compiler-macro ignore-errors
;;;;;;  assert check-type typep cl-struct-setf-expander defstruct
;;;;;;  define-modify-macro callf2 callf letf* letf rotatef shiftf
;;;;;;  remf cl-do-pop psetf setf get-setf-method defsetf define-setf-method
;;;;;;  declare the locally multiple-value-setq multiple-value-bind
;;;;;;  lexical-let* lexical-let symbol-macrolet macrolet labels
;;;;;;  flet progv psetq do-all-symbols do-symbols dotimes dolist
;;;;;;  do* do loop return-from return block etypecase typecase ecase
;;;;;;  case load-time-value eval-when destructuring-bind function*
;;;;;;  defmacro* defun* gentemp gensym cl-compile-time-init) "cl-macs"
Glenn Morris's avatar
Glenn Morris committed
286
;;;;;;  "cl-macs.el" "d1c9f68f599fbec644a06dd5cf520fb5")
287 288
;;; Generated autoloads from cl-macs.el

Glenn Morris's avatar
Glenn Morris committed
289
(autoload 'cl-compile-time-init "cl-macs" "\
290 291 292 293
Not documented

\(fn)" nil nil)

Glenn Morris's avatar
Glenn Morris committed
294
(autoload 'gensym "cl-macs" "\
295 296 297 298 299
Generate a new uninterned symbol.
The name is made by appending a number to PREFIX, default \"G\".

\(fn &optional PREFIX)" nil nil)

Glenn Morris's avatar
Glenn Morris committed
300
(autoload 'gentemp "cl-macs" "\
301 302 303 304 305
Generate a new interned symbol with a unique name.
The name is made by appending a number to PREFIX, default \"G\".

\(fn &optional PREFIX)" nil nil)

Glenn Morris's avatar
Glenn Morris committed
306
(autoload 'defun* "cl-macs" "\
307 308 309 310 311 312
Define NAME as a function.
Like normal `defun', except ARGLIST allows full Common Lisp conventions,
and BODY is implicitly surrounded by (block NAME ...).

\(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
313
(autoload 'defmacro* "cl-macs" "\
314 315 316 317 318 319
Define NAME as a macro.
Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
and BODY is implicitly surrounded by (block NAME ...).

\(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
320
(autoload 'function* "cl-macs" "\
321 322 323 324 325 326
Introduce a function.
Like normal `function', except that if argument is a lambda form,
its argument list allows full Common Lisp conventions.

\(fn FUNC)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
327
(autoload 'destructuring-bind "cl-macs" "\
328 329 330 331
Not documented

\(fn ARGS EXPR &rest BODY)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
332
(autoload 'eval-when "cl-macs" "\
333 334 335 336 337 338 339
Control when BODY is evaluated.
If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.

\(fn (WHEN...) BODY...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
340
(autoload 'load-time-value "cl-macs" "\
341 342 343 344 345
Like `progn', but evaluates the body at load time.
The result of the body appears to the compiler as a quoted constant.

\(fn FORM &optional READ-ONLY)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
346
(autoload 'case "cl-macs" "\
347 348 349 350 351 352 353 354 355 356
Eval EXPR and choose among clauses on that value.
Each clause looks like (KEYLIST BODY...).  EXPR is evaluated and compared
against each key in each KEYLIST; the corresponding BODY is evaluated.
If no clause succeeds, case returns nil.  A single atom may be used in
place of a KEYLIST of one atom.  A KEYLIST of t or `otherwise' is
allowed only in the final clause, and matches if no other keys match.
Key values are compared by `eql'.

\(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
357
(autoload 'ecase "cl-macs" "\
358 359 360 361 362
Like `case', but error if no case fits.
`otherwise'-clauses are not allowed.

\(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
363
(autoload 'typecase "cl-macs" "\
364 365 366 367 368 369 370 371
Evals EXPR, chooses among clauses on that value.
Each clause looks like (TYPE BODY...).  EXPR is evaluated and, if it
satisfies TYPE, the corresponding BODY is evaluated.  If no clause succeeds,
typecase returns nil.  A TYPE of t or `otherwise' is allowed only in the
final clause, and matches if no other keys match.

\(fn EXPR (TYPE BODY...)...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
372
(autoload 'etypecase "cl-macs" "\
373 374 375 376 377
Like `typecase', but error if no case fits.
`otherwise'-clauses are not allowed.

\(fn EXPR (TYPE BODY...)...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
378
(autoload 'block "cl-macs" "\
379 380 381 382 383 384 385 386 387 388 389
Define a lexically-scoped block named NAME.
NAME may be any symbol.  Code inside the BODY forms can call `return-from'
to jump prematurely out of the block.  This differs from `catch' and `throw'
in two respects:  First, the NAME is an unevaluated symbol rather than a
quoted symbol or other form; and second, NAME is lexically rather than
dynamically scoped:  Only references to it within BODY will work.  These
references may appear inside macro expansions, but not inside functions
called from BODY.

\(fn NAME &rest BODY)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
390
(autoload 'return "cl-macs" "\
391 392 393 394 395
Return from the block named nil.
This is equivalent to `(return-from nil RESULT)'.

\(fn &optional RESULT)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
396
(autoload 'return-from "cl-macs" "\
397 398 399 400 401 402 403 404
Return from the block named NAME.
This jump out to the innermost enclosing `(block NAME ...)' form,
returning RESULT from that form (or nil if RESULT is omitted).
This is compatible with Common Lisp, but note that `defun' and
`defmacro' do not create implicit blocks as they do in Common Lisp.

\(fn NAME &optional RESULT)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
405
(autoload 'loop "cl-macs" "\
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
The Common Lisp `loop' macro.
Valid clauses are:
  for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
  for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
  for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
  always COND, never COND, thereis COND, collect EXPR into VAR,
  append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
  count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
  if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
  unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
  do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
  finally return EXPR, named NAME.

\(fn CLAUSE...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
421
(autoload 'do "cl-macs" "\
422 423 424 425
The Common Lisp `do' loop.

\(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
426
(autoload 'do* "cl-macs" "\
427 428 429 430
The Common Lisp `do*' loop.

\(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
431
(autoload 'dolist "cl-macs" "\
432 433 434 435 436 437
Loop over a list.
Evaluate BODY with VAR bound to each `car' from LIST, in turn.
Then evaluate RESULT to get return value, default nil.

\(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
438
(autoload 'dotimes "cl-macs" "\
439 440 441 442 443 444 445
Loop a certain number of times.
Evaluate BODY with VAR bound to successive integers from 0, inclusive,
to COUNT, exclusive.  Then evaluate RESULT to get return value, default
nil.

\(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
446
(autoload 'do-symbols "cl-macs" "\
447 448 449 450 451 452
Loop over all symbols.
Evaluate BODY with VAR bound to each interned symbol, or to each symbol
from OBARRAY.

\(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
453
(autoload 'do-all-symbols "cl-macs" "\
454 455 456 457
Not documented

\(fn SPEC &rest BODY)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
458
(autoload 'psetq "cl-macs" "\
459 460 461 462 463 464
Set SYMs to the values VALs in parallel.
This is like `setq', except that all VAL forms are evaluated (in order)
before assigning any symbols SYM to the corresponding values.

\(fn SYM VAL SYM VAL ...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
465
(autoload 'progv "cl-macs" "\
466 467 468 469 470 471 472 473 474
Bind SYMBOLS to VALUES dynamically in BODY.
The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
Each symbol in the first list is bound to the corresponding value in the
second list (or made unbound if VALUES is shorter than SYMBOLS); then the
BODY forms are executed and their result is returned.  This is much like
a `let' form, except that the list of symbols can be computed at run-time.

\(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
475
(autoload 'flet "cl-macs" "\
476 477 478 479 480 481 482 483
Make temporary function definitions.
This is an analogue of `let' that operates on the function cell of FUNC
rather than its value cell.  The FORMs are evaluated with the specified
function definitions in place, then the definitions are undone (the FUNCs
go back to their previous definitions, or lack thereof).

\(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
484
(autoload 'labels "cl-macs" "\
485 486 487 488 489 490
Make temporary function bindings.
This is like `flet', except the bindings are lexical instead of dynamic.
Unlike `flet', this macro is fully compliant with the Common Lisp standard.

\(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
491
(autoload 'macrolet "cl-macs" "\
492 493 494 495 496
Make temporary macro definitions.
This is like `flet', but for macros instead of functions.

\(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
497
(autoload 'symbol-macrolet "cl-macs" "\
498 499 500 501 502 503
Make symbol macro definitions.
Within the body FORMs, references to the variable NAME will be replaced
by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).

\(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
504
(autoload 'lexical-let "cl-macs" "\
505 506 507 508 509 510
Like `let', but lexically scoped.
The main visible difference is that lambdas inside BODY will create
lexical closures as in Common Lisp.

\(fn VARLIST BODY)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
511
(autoload 'lexical-let* "cl-macs" "\
512 513 514 515 516 517
Like `let*', but lexically scoped.
The main visible difference is that lambdas inside BODY will create
lexical closures as in Common Lisp.

\(fn VARLIST BODY)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
518
(autoload 'multiple-value-bind "cl-macs" "\
519 520 521 522 523 524 525 526 527
Collect multiple return values.
FORM must return a list; the BODY is then executed with the first N elements
of this list bound (`let'-style) to each of the symbols SYM in turn.  This
is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
simulate true multiple return values.  For compatibility, (values A B C) is
a synonym for (list A B C).

\(fn (SYM...) FORM BODY)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
528
(autoload 'multiple-value-setq "cl-macs" "\
529 530 531 532 533 534 535 536
Collect multiple return values.
FORM must return a list; the first N elements of this list are stored in
each of the symbols SYM in turn.  This is analogous to the Common Lisp
`multiple-value-setq' macro, using lists to simulate true multiple return
values.  For compatibility, (values A B C) is a synonym for (list A B C).

\(fn (SYM...) FORM)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
537
(autoload 'locally "cl-macs" "\
538 539 540 541
Not documented

\(fn &rest BODY)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
542
(autoload 'the "cl-macs" "\
543 544 545 546
Not documented

\(fn TYPE FORM)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
547
(autoload 'declare "cl-macs" "\
548 549 550 551
Not documented

\(fn &rest SPECS)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
552
(autoload 'define-setf-method "cl-macs" "\
553 554 555 556 557 558 559 560 561 562
Define a `setf' method.
This method shows how to handle `setf's to places of the form (NAME ARGS...).
The argument forms ARGS are bound according to ARGLIST, as if NAME were
going to be expanded as a macro, then the BODY forms are executed and must
return a list of five elements: a temporary-variables list, a value-forms
list, a store-variables list (of length one), a store-form, and an access-
form.  See `defsetf' for a simpler way to define most setf-methods.

\(fn NAME ARGLIST BODY...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
563
(autoload 'defsetf "cl-macs" "\
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
Define a `setf' method.
This macro is an easy-to-use substitute for `define-setf-method' that works
well for simple place forms.  In the simple `defsetf' form, `setf's of
the form (setf (NAME ARGS...) VAL) are transformed to function or macro
calls of the form (FUNC ARGS... VAL).  Example:

  (defsetf aref aset)

Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
Here, the above `setf' call is expanded by binding the argument forms ARGS
according to ARGLIST, binding the value form VAL to STORE, then executing
BODY, which must return a Lisp form that does the necessary `setf' operation.
Actually, ARGLIST and STORE may be bound to temporary variables which are
introduced automatically to preserve proper execution order of the arguments.
Example:

  (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))

\(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
584
(autoload 'get-setf-method "cl-macs" "\
585 586 587 588 589 590
Return a list of five values describing the setf-method for PLACE.
PLACE may be any Lisp form which can appear as the PLACE argument to
a macro like `setf' or `incf'.

\(fn PLACE &optional ENV)" nil nil)

Glenn Morris's avatar
Glenn Morris committed
591
(autoload 'setf "cl-macs" "\
592 593 594 595 596 597 598 599
Set each PLACE to the value of its VAL.
This is a generalized version of `setq'; the PLACEs may be symbolic
references such as (car x) or (aref x i), as well as plain symbols.
For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
The return value is the last VAL in the list.

\(fn PLACE VAL PLACE VAL ...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
600
(autoload 'psetf "cl-macs" "\
601 602 603 604 605 606
Set PLACEs to the values VALs in parallel.
This is like `setf', except that all VAL forms are evaluated (in order)
before assigning any PLACEs to the corresponding values.

\(fn PLACE VAL PLACE VAL ...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
607
(autoload 'cl-do-pop "cl-macs" "\
608 609 610 611
Not documented

\(fn PLACE)" nil nil)

Glenn Morris's avatar
Glenn Morris committed
612
(autoload 'remf "cl-macs" "\
613 614 615 616 617 618
Remove TAG from property list PLACE.
PLACE may be a symbol, or any generalized variable allowed by `setf'.
The form returns true if TAG was found and removed, nil otherwise.

\(fn PLACE TAG)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
619
(autoload 'shiftf "cl-macs" "\
620 621 622 623 624 625
Shift left among PLACEs.
Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
Each PLACE may be a symbol, or any generalized variable allowed by `setf'.

\(fn PLACE... VAL)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
626
(autoload 'rotatef "cl-macs" "\
627 628 629 630 631 632
Rotate left among PLACEs.
Example: (rotatef A B C) sets A to B, B to C, and C to A.  It returns nil.
Each PLACE may be a symbol, or any generalized variable allowed by `setf'.

\(fn PLACE...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
633
(autoload 'letf "cl-macs" "\
634 635 636 637 638 639 640 641 642 643 644
Temporarily bind to PLACEs.
This is the analogue of `let', but with generalized variables (in the
sense of `setf') for the PLACEs.  Each PLACE is set to the corresponding
VALUE, then the BODY forms are executed.  On exit, either normally or
because of a `throw' or error, the PLACEs are set back to their original
values.  Note that this macro is *not* available in Common Lisp.
As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
the PLACE is not modified before executing BODY.

\(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
645
(autoload 'letf* "cl-macs" "\
646 647 648 649 650 651 652 653 654 655 656
Temporarily bind to PLACEs.
This is the analogue of `let*', but with generalized variables (in the
sense of `setf') for the PLACEs.  Each PLACE is set to the corresponding
VALUE, then the BODY forms are executed.  On exit, either normally or
because of a `throw' or error, the PLACEs are set back to their original
values.  Note that this macro is *not* available in Common Lisp.
As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
the PLACE is not modified before executing BODY.

\(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
657
(autoload 'callf "cl-macs" "\
658 659 660 661 662 663
Set PLACE to (FUNC PLACE ARGS...).
FUNC should be an unquoted function name.  PLACE may be a symbol,
or any generalized variable allowed by `setf'.

\(fn FUNC PLACE ARGS...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
664
(autoload 'callf2 "cl-macs" "\
665 666 667 668 669
Set PLACE to (FUNC ARG1 PLACE ARGS...).
Like `callf', but PLACE is the second argument of FUNC, not the first.

\(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
670
(autoload 'define-modify-macro "cl-macs" "\
671 672 673 674 675 676
Define a `setf'-like modify macro.
If NAME is called, it combines its PLACE argument with the other arguments
from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)

\(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
677
(autoload 'defstruct "cl-macs" "\
678 679 680 681 682 683 684
Define a struct type.
This macro defines a new Lisp data type called NAME, which contains data
stored in SLOTs.  This defines a `make-NAME' constructor, a `copy-NAME'
copier, a `NAME-p' predicate, and setf-able `NAME-SLOT' accessors.

\(fn (NAME OPTIONS...) (SLOT SLOT-OPTS...)...)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
685
(autoload 'cl-struct-setf-expander "cl-macs" "\
686 687 688 689
Not documented

\(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)

Glenn Morris's avatar
Glenn Morris committed
690
(autoload 'typep "cl-macs" "\
691 692 693 694 695
Check that OBJECT is of type TYPE.
TYPE is a Common Lisp-style type specifier.

\(fn OBJECT TYPE)" nil nil)

Glenn Morris's avatar
Glenn Morris committed
696
(autoload 'check-type "cl-macs" "\
697 698 699 700 701
Verify that FORM is of type TYPE; signal an error if not.
STRING is an optional description of the desired type.

\(fn FORM TYPE &optional STRING)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
702
(autoload 'assert "cl-macs" "\
703 704 705 706 707 708 709 710
Verify that FORM returns non-nil; signal an error if not.
Second arg SHOW-ARGS means to include arguments of FORM in message.
Other args STRING and ARGS... are arguments to be passed to `error'.
They are not evaluated unless the assertion fails.  If STRING is
omitted, a default message listing FORM itself is used.

\(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
711
(autoload 'ignore-errors "cl-macs" "\
712 713 714 715 716
Execute BODY; if an error occurs, return nil.
Otherwise, return result of last form in BODY.

\(fn &rest BODY)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
717
(autoload 'define-compiler-macro "cl-macs" "\
718 719 720 721 722 723 724 725 726 727 728 729 730
Define a compiler-only macro.
This is like `defmacro', but macro expansion occurs only if the call to
FUNC is compiled (i.e., not interpreted).  Compiler macros should be used
for optimizing the way calls to FUNC are compiled; the form returned by
BODY should do the same thing as a call to the normal function called
FUNC, though possibly more efficiently.  Note that, like regular macros,
compiler macros are expanded repeatedly until no further expansions are
possible.  Unlike regular macros, BODY can decide to \"punt\" and leave the
original function call alone by declaring an initial `&whole foo' parameter
and then returning foo.

\(fn FUNC ARGS &rest BODY)" nil (quote macro))

Glenn Morris's avatar
Glenn Morris committed
731
(autoload 'compiler-macroexpand "cl-macs" "\
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
Not documented

\(fn FORM)" nil nil)

;;;***

;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
;;;;;;  nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
;;;;;;  nset-difference set-difference nintersection intersection
;;;;;;  nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
;;;;;;  assoc-if assoc* cl-adjoin member-if-not member-if member*
;;;;;;  merge stable-sort sort* search mismatch count-if-not count-if
;;;;;;  count position-if-not position-if position find-if-not find-if
;;;;;;  find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
;;;;;;  substitute-if substitute delete-duplicates remove-duplicates
;;;;;;  delete-if-not delete-if delete* remove-if-not remove-if remove*
Andreas Schwab's avatar
Update.  
Andreas Schwab committed
748
;;;;;;  replace fill reduce) "cl-seq" "cl-seq.el" "c972a97c053d4e001ac1d1012c315b28")
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
;;; Generated autoloads from cl-seq.el

(autoload (quote reduce) "cl-seq" "\
Reduce two-argument FUNCTION across SEQ.

Keywords supported:  :start :end :from-end :initial-value :key

\(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote fill) "cl-seq" "\
Fill the elements of SEQ with ITEM.

Keywords supported:  :start :end

\(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)

(autoload (quote replace) "cl-seq" "\
Replace the elements of SEQ1 with the elements of SEQ2.
SEQ1 is destructively modified, then returned.

Keywords supported:  :start1 :end1 :start2 :end2

\(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)

(autoload (quote remove*) "cl-seq" "\
Remove all occurrences of ITEM in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.

Keywords supported:  :test :test-not :key :count :start :end :from-end

\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote remove-if) "cl-seq" "\
Remove all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.

Keywords supported:  :key :count :start :end :from-end

\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote remove-if-not) "cl-seq" "\
Remove all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.

Keywords supported:  :key :count :start :end :from-end

\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote delete*) "cl-seq" "\
Remove all occurrences of ITEM in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.

Keywords supported:  :test :test-not :key :count :start :end :from-end

\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote delete-if) "cl-seq" "\
Remove all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.

Keywords supported:  :key :count :start :end :from-end

\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote delete-if-not) "cl-seq" "\
Remove all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.

Keywords supported:  :key :count :start :end :from-end

\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote remove-duplicates) "cl-seq" "\
Return a copy of SEQ with all duplicate elements removed.

Keywords supported:  :test :test-not :key :start :end :from-end

\(fn SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote delete-duplicates) "cl-seq" "\
Remove all duplicate elements from SEQ (destructively).

Keywords supported:  :test :test-not :key :start :end :from-end

\(fn SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote substitute) "cl-seq" "\
Substitute NEW for OLD in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.

Keywords supported:  :test :test-not :key :count :start :end :from-end

\(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote substitute-if) "cl-seq" "\
Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.

Keywords supported:  :key :count :start :end :from-end

\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote substitute-if-not) "cl-seq" "\
Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.

Keywords supported:  :key :count :start :end :from-end

\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote nsubstitute) "cl-seq" "\
Substitute NEW for OLD in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.

Keywords supported:  :test :test-not :key :count :start :end :from-end

\(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote nsubstitute-if) "cl-seq" "\
Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.

Keywords supported:  :key :count :start :end :from-end

\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote nsubstitute-if-not) "cl-seq" "\
Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.

Keywords supported:  :key :count :start :end :from-end

\(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote find) "cl-seq" "\
Find the first occurrence of ITEM in SEQ.
Return the matching ITEM, or nil if not found.

Keywords supported:  :test :test-not :key :start :end :from-end

\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote find-if) "cl-seq" "\
Find the first item satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.

Keywords supported:  :key :start :end :from-end

\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote find-if-not) "cl-seq" "\
Find the first item not satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.

Keywords supported:  :key :start :end :from-end

\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote position) "cl-seq" "\
Find the first occurrence of ITEM in SEQ.
Return the index of the matching item, or nil if not found.

Keywords supported:  :test :test-not :key :start :end :from-end

\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote position-if) "cl-seq" "\
Find the first item satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.

Keywords supported:  :key :start :end :from-end

\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote position-if-not) "cl-seq" "\
Find the first item not satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.

Keywords supported:  :key :start :end :from-end

\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote count) "cl-seq" "\
Count the number of occurrences of ITEM in SEQ.

Keywords supported:  :test :test-not :key :start :end

\(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote count-if) "cl-seq" "\
Count the number of items satisfying PREDICATE in SEQ.

Keywords supported:  :key :start :end

\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote count-if-not) "cl-seq" "\
Count the number of items not satisfying PREDICATE in SEQ.

Keywords supported:  :key :start :end

\(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)

(autoload (quote mismatch) "cl-seq" "\
Compare SEQ1 with SEQ2, return index of first mismatching element.
Return nil if the sequences match.  If one sequence is a prefix of the
other, the return value indicates the end of the shorter sequence.

Keywords supported:  :test :test-not :key :start1 :end1 :start2 :end2 :from-end

\(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)

(autoload (quote search) "cl-seq" "\
Search for SEQ1 as a subsequence of SEQ2.
Return the index of the leftmost element of the first match found;
return nil if there are no matches.

Keywords supported:  :test :test-not :key :start1 :end1 :start2 :end2 :from-end

\(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)

(autoload (quote sort*) "cl-seq" "\
Sort the argument SEQ according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.

Keywords supported:  :key

\(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)

(autoload (quote stable-sort) "cl-seq" "\
Sort the argument SEQ stably according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.

Keywords supported:  :key

\(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)

(autoload (quote merge) "cl-seq" "\
Destructively merge the two sequences to produce a new sequence.
TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
sequences, and PREDICATE is a `less-than' predicate on the elements.

Keywords supported:  :key

\(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)

(autoload (quote member*) "cl-seq" "\
Find the first occurrence of ITEM in LIST.
Return the sublist of LIST whose car is ITEM.

Keywords supported:  :test :test-not :key

\(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)

(autoload (quote member-if) "cl-seq" "\
Find the first item satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.

Keywords supported:  :key

\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)

(autoload (quote member-if-not) "cl-seq" "\
Find the first item not satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.

Keywords supported:  :key

\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)

(autoload (quote cl-adjoin) "cl-seq" "\
Not documented

\(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)

(autoload (quote assoc*) "cl-seq" "\
Find the first item whose car matches ITEM in LIST.

Keywords supported:  :test :test-not :key

\(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)

(autoload (quote assoc-if) "cl-seq" "\
Find the first item whose car satisfies PREDICATE in LIST.

Keywords supported:  :key

\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)

(autoload (quote assoc-if-not) "cl-seq" "\
Find the first item whose car does not satisfy PREDICATE in LIST.

Keywords supported:  :key

\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)

(autoload (quote rassoc*) "cl-seq" "\
Find the first item whose cdr matches ITEM in LIST.

Keywords supported:  :test :test-not :key

\(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)

(autoload (quote rassoc-if) "cl-seq" "\
Find the first item whose cdr satisfies PREDICATE in LIST.

Keywords supported:  :key

\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)

(autoload (quote rassoc-if-not) "cl-seq" "\
Find the first item whose cdr does not satisfy PREDICATE in LIST.

Keywords supported:  :key

\(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)

(autoload (quote union) "cl-seq" "\
Combine LIST1 and LIST2 using a set-union operation.
The result list contains all items that appear in either LIST1 or LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.

Keywords supported:  :test :test-not :key

\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)

(autoload (quote nunion) "cl-seq" "\
Combine LIST1 and LIST2 using a set-union operation.
The result list contains all items that appear in either LIST1 or LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.

Keywords supported:  :test :test-not :key

\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)

(autoload (quote intersection) "cl-seq" "\
Combine LIST1 and LIST2 using a set-intersection operation.
The result list contains all items that appear in both LIST1 and LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.

Keywords supported:  :test :test-not :key

\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)

(autoload (quote nintersection) "cl-seq" "\
Combine LIST1 and LIST2 using a set-intersection operation.
The result list contains all items that appear in both LIST1 and LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.

Keywords supported:  :test :test-not :key

\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)

(autoload (quote set-difference) "cl-seq" "\
Combine LIST1 and LIST2 using a set-difference operation.
The result list contains all items that appear in LIST1 but not LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.

Keywords supported:  :test :test-not :key

\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)

(autoload (quote nset-difference) "cl-seq" "\
Combine LIST1 and LIST2 using a set-difference operation.
The result list contains all items that appear in LIST1 but not LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.

Keywords supported:  :test :test-not :key

\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)

(autoload (quote set-exclusive-or) "cl-seq" "\
Combine LIST1 and LIST2 using a set-exclusive-or operation.
The result list contains all items that appear in exactly one of LIST1, LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.

Keywords supported:  :test :test-not :key

\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)

(autoload (quote nset-exclusive-or) "cl-seq" "\
Combine LIST1 and LIST2 using a set-exclusive-or operation.
The result list contains all items that appear in exactly one of LIST1, LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.

Keywords supported:  :test :test-not :key

\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)

(autoload (quote subsetp) "cl-seq" "\
Return true if LIST1 is a subset of LIST2.
I.e., if every element of LIST1 also appears in LIST2.

Keywords supported:  :test :test-not :key

\(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)

(autoload (quote subst-if) "cl-seq" "\
Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced by NEW.

Keywords supported:  :key

\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)

(autoload (quote subst-if-not) "cl-seq" "\
Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all non-matching elements replaced by NEW.

Keywords supported:  :key

\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)

(autoload (quote nsubst) "cl-seq" "\
Substitute NEW for OLD everywhere in TREE (destructively).
Any element of TREE which is `eql' to OLD is changed to NEW (via a call
to `setcar').

Keywords supported:  :test :test-not :key

\(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)

(autoload (quote nsubst-if) "cl-seq" "\
Substitute NEW for elements matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').

Keywords supported:  :key

\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)

(autoload (quote nsubst-if-not) "cl-seq" "\
Substitute NEW for elements not matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').

Keywords supported:  :key

\(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)

(autoload (quote sublis) "cl-seq" "\
Perform substitutions indicated by ALIST in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced.

Keywords supported:  :test :test-not :key

\(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)

(autoload (quote nsublis) "cl-seq" "\
Perform substitutions indicated by ALIST in TREE (destructively).
Any matching element of TREE is changed via a call to `setcar'.

Keywords supported:  :test :test-not :key

\(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)

(autoload (quote tree-equal) "cl-seq" "\
Return t if trees TREE1 and TREE2 have `eql' leaves.
Atoms are compared by `eql'; cons cells are compared recursively.

Keywords supported:  :test :test-not :key

\(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)

;;;***

;; Local Variables:
;; version-control: never
;; no-byte-compile: t
;; no-update-autoloads: t
;; End:

;; arch-tag: 08cc5aab-e992-47f6-992e-12a7428c1a0e
;;; cl-loaddefs.el ends here