lisp.h 101 KB
Newer Older
Jim Blandy's avatar
Jim Blandy committed
1
/* Fundamental definitions for GNU Emacs Lisp interpreter.
2 3
   Copyright (C) 1985,86,87,93,94,95,97,98,1999,2000
     Free Software Foundation, Inc.
Jim Blandy's avatar
Jim Blandy committed
4 5 6 7 8

This file is part of GNU Emacs.

GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
Jim Blandy's avatar
Jim Blandy committed
9
the Free Software Foundation; either version 2, or (at your option)
Jim Blandy's avatar
Jim Blandy committed
10 11 12 13 14 15 16 17 18
any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING.  If not, write to
19 20
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */
Jim Blandy's avatar
Jim Blandy committed
21

Gerd Moellmann's avatar
Gerd Moellmann committed
22
/* Declare the prototype for a general external function.  */
23
#if defined (PROTOTYPES) || defined (WINDOWSNT)
Gerd Moellmann's avatar
Gerd Moellmann committed
24 25 26 27 28
#define P_(proto) proto
#else
#define P_(proto) ()
#endif

Jim Blandy's avatar
Jim Blandy committed
29

30
/* These are default choices for the types to use.  */
31 32 33 34 35 36 37 38 39
#ifdef _LP64
#ifndef EMACS_INT
#define EMACS_INT long
#define BITS_PER_EMACS_INT BITS_PER_LONG
#endif
#ifndef EMACS_UINT
#define EMACS_UINT unsigned long
#endif
#else /* not _LP64 */
40 41
#ifndef EMACS_INT
#define EMACS_INT int
Richard M. Stallman's avatar
Richard M. Stallman committed
42
#define BITS_PER_EMACS_INT BITS_PER_INT
43 44 45 46
#endif
#ifndef EMACS_UINT
#define EMACS_UINT unsigned int
#endif
47
#endif
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
/* Extra internal type checking?  */
extern int suppress_checking;
#ifdef ENABLE_CHECKING
extern void die P_((const char *, const char *, int));
#define CHECK(check,msg) ((check || suppress_checking ? 0 : die (msg, __FILE__, __LINE__)), 0)
#else
/* Produce same side effects and result, but don't complain.  */
#define CHECK(check,msg) ((check),0)
#endif
/* Define an Emacs version of "assert", since some system ones are
   flaky.  */
#if defined (__GNUC__) && __GNUC__ >= 2 && defined (__STDC__)
#define eassert(cond) CHECK(cond,"assertion failed: " #cond)
#else
#define eassert(cond) CHECK(cond,"assertion failed")
#endif

66
/* Define the fundamental Lisp data structures.  */
Jim Blandy's avatar
Jim Blandy committed
67

68
/* This is the set of Lisp data types.  */
Jim Blandy's avatar
Jim Blandy committed
69 70 71

enum Lisp_Type
  {
72
    /* Integer.  XINT (obj) is the integer value.  */
Jim Blandy's avatar
Jim Blandy committed
73 74
    Lisp_Int,

75
    /* Symbol.  XSYMBOL (object) points to a struct Lisp_Symbol.  */
Jim Blandy's avatar
Jim Blandy committed
76 77
    Lisp_Symbol,

78 79 80
    /* Miscellaneous.  XMISC (object) points to a union Lisp_Misc,
       whose first member indicates the subtype.  */
    Lisp_Misc,
Jim Blandy's avatar
Jim Blandy committed
81 82

    /* String.  XSTRING (object) points to a struct Lisp_String.
83
       The length of the string, and its contents, are stored therein.  */
Jim Blandy's avatar
Jim Blandy committed
84 85
    Lisp_String,

86
    /* Vector of Lisp objects, or something resembling it.
87
       XVECTOR (object) points to a struct Lisp_Vector, which contains
88 89 90
       the size and contents.  The size field also contains the type
       information, if it's not a real vector object.  */
    Lisp_Vectorlike,
Jim Blandy's avatar
Jim Blandy committed
91

92
    /* Cons.  XCONS (object) points to a struct Lisp_Cons.  */
Jim Blandy's avatar
Jim Blandy committed
93 94
    Lisp_Cons,

Jim Blandy's avatar
Jim Blandy committed
95
    Lisp_Float,
96 97

    /* This is not a type code.  It is for range checking.  */
98
    Lisp_Type_Limit
Jim Blandy's avatar
Jim Blandy committed
99 100
  };

101
/* This is the set of datatypes that share a common structure.
102 103 104 105
   The first member of the structure is a type code from this set.
   The enum values are arbitrary, but we'll use large numbers to make it
   more likely that we'll spot the error if a random word in memory is
   mistakenly interpreted as a Lisp_Misc.  */
Karl Heuer's avatar
Karl Heuer committed
106 107
enum Lisp_Misc_Type
  {
108
    Lisp_Misc_Free = 0x5eab,
109
    Lisp_Misc_Marker,
110 111 112
    Lisp_Misc_Intfwd,
    Lisp_Misc_Boolfwd,
    Lisp_Misc_Objfwd,
113 114
    Lisp_Misc_Buffer_Objfwd,
    Lisp_Misc_Buffer_Local_Value,
115
    Lisp_Misc_Some_Buffer_Local_Value,
116
    Lisp_Misc_Overlay,
117
    Lisp_Misc_Kboard_Objfwd,
118 119 120 121 122
    /* Currently floats are not a misc type,
       but let's define this in case we want to change that.  */
    Lisp_Misc_Float,
    /* This is not a type code.  It is for range checking.  */
    Lisp_Misc_Limit
Karl Heuer's avatar
Karl Heuer committed
123 124
  };

125 126
/* These values are overridden by the m- file on some machines.  */
#ifndef VALBITS
127
#define VALBITS (BITS_PER_EMACS_INT - 4)
128 129 130 131 132 133
#endif

#ifndef GCTYPEBITS
#define GCTYPEBITS 3
#endif

134 135 136 137
#if 0  /* This doesn't work on some systems that don't allow enumerators
	  > INT_MAX, and it won't work for long long EMACS_INT.  These
	  values are now found in emacs.c as EMACS_INT variables.  */

Karl Heuer's avatar
Karl Heuer committed
138 139 140 141 142 143
/* Make these values available in GDB, which sees enums but not macros.  */

enum gdb_lisp_params
{
  gdb_valbits = VALBITS,
  gdb_gctypebits = GCTYPEBITS,
144
  gdb_emacs_intbits = sizeof (EMACS_INT) * BITS_PER_CHAR,
Karl Heuer's avatar
Karl Heuer committed
145 146 147 148 149 150 151
#ifdef DATA_SEG_BITS
  gdb_data_seg_bits = DATA_SEG_BITS
#else
  gdb_data_seg_bits = 0
#endif
};

152 153
#endif /* 0 */

Jim Blandy's avatar
Jim Blandy committed
154 155
#ifndef NO_UNION_TYPE

156
#ifndef WORDS_BIG_ENDIAN
Jim Blandy's avatar
Jim Blandy committed
157 158 159 160 161 162 163

/* Definition of Lisp_Object for little-endian machines.  */

typedef
union Lisp_Object
  {
    /* Used for comparing two Lisp_Objects;
164
       also, positive integers can be accessed fast this way.  */
Jim Blandy's avatar
Jim Blandy committed
165 166 167 168
    int i;

    struct
      {
169 170
	int val: VALBITS;
	int type: GCTYPEBITS+1;
Jim Blandy's avatar
Jim Blandy committed
171 172 173
      } s;
    struct
      {
174 175
	unsigned int val: VALBITS;
	int type: GCTYPEBITS+1;
Jim Blandy's avatar
Jim Blandy committed
176 177 178
      } u;
    struct
      {
179 180
	unsigned int val: VALBITS;
	enum Lisp_Type type: GCTYPEBITS;
Jim Blandy's avatar
Jim Blandy committed
181 182 183 184 185 186 187
	/* The markbit is not really part of the value of a Lisp_Object,
	   and is always zero except during garbage collection.  */
	unsigned int markbit: 1;
      } gu;
  }
Lisp_Object;

188
#else /* If WORDS_BIG_ENDIAN */
Jim Blandy's avatar
Jim Blandy committed
189 190 191 192 193

typedef
union Lisp_Object
  {
    /* Used for comparing two Lisp_Objects;
194
       also, positive integers can be accessed fast this way.  */
Jim Blandy's avatar
Jim Blandy committed
195 196 197 198
    int i;

    struct
      {
199 200
	int type: GCTYPEBITS+1;
	int val: VALBITS;
Jim Blandy's avatar
Jim Blandy committed
201 202 203
      } s;
    struct
      {
204 205
	int type: GCTYPEBITS+1;
	unsigned int val: VALBITS;
Jim Blandy's avatar
Jim Blandy committed
206 207 208 209 210 211
      } u;
    struct
      {
	/* The markbit is not really part of the value of a Lisp_Object,
	   and is always zero except during garbage collection.  */
	unsigned int markbit: 1;
212 213
	enum Lisp_Type type: GCTYPEBITS;
	unsigned int val: VALBITS;
Jim Blandy's avatar
Jim Blandy committed
214 215 216 217
      } gu;
  }
Lisp_Object;

218
#endif /* WORDS_BIG_ENDIAN */
Jim Blandy's avatar
Jim Blandy committed
219 220 221 222

#endif /* NO_UNION_TYPE */


223
/* If union type is not wanted, define Lisp_Object as just a number.  */
Jim Blandy's avatar
Jim Blandy committed
224 225

#ifdef NO_UNION_TYPE
226
#define Lisp_Object EMACS_INT
227
#endif /* NO_UNION_TYPE */
Jim Blandy's avatar
Jim Blandy committed
228 229

#ifndef VALMASK
230
#define VALMASK ((((EMACS_INT) 1)<<VALBITS) - 1)
Jim Blandy's avatar
Jim Blandy committed
231
#endif
232
#define GCTYPEMASK ((((EMACS_INT) 1)<<GCTYPEBITS) - 1)
233 234 235 236 237 238 239 240 241 242 243 244 245

/* Two flags that are set during GC.  On some machines, these flags
   are defined differently by the m- file.  */

/* This is set in the car of a cons and in the plist slot of a symbol
   to indicate it is marked.  Likewise in the plist slot of an interval,
   the chain slot of a marker, the type slot of a float, and the name
   slot of a buffer.

   In strings, this bit in the size field indicates that the string
   is a "large" one, one which was separately malloc'd
   rather than being part of a string block.  */

246
#ifndef MARKBIT
247
#define MARKBIT ((EMACS_INT) ((EMACS_UINT) 1 << (VALBITS + GCTYPEBITS)))
248
#endif /*MARKBIT */
Jim Blandy's avatar
Jim Blandy committed
249

250 251 252 253 254 255 256
/* In the size word of a vector, this bit means the vector has been marked.
   In the size word of a large string, likewise.  */

#ifndef ARRAY_MARK_FLAG
#define ARRAY_MARK_FLAG ((MARKBIT >> 1) & ~MARKBIT)
#endif /* no ARRAY_MARK_FLAG */

257 258 259 260 261 262
/* In the size word of a struct Lisp_Vector, this bit means it's really
   some other vector-like object.  */
#ifndef PSEUDOVECTOR_FLAG
#define PSEUDOVECTOR_FLAG ((ARRAY_MARK_FLAG >> 1) & ~ARRAY_MARK_FLAG)
#endif

263
/* In a pseudovector, the size field actually contains a word with one
264 265
   PSEUDOVECTOR_FLAG bit set, and exactly one of the following bits to
   indicate the actual type.  */
266 267 268 269 270 271 272 273 274
enum pvec_type
{
  PVEC_NORMAL_VECTOR = 0,
  PVEC_PROCESS = 0x200,
  PVEC_FRAME = 0x400,
  PVEC_COMPILED = 0x800,
  PVEC_WINDOW = 0x1000,
  PVEC_WINDOW_CONFIGURATION = 0x2000,
  PVEC_SUBR = 0x4000,
275 276 277
  PVEC_CHAR_TABLE = 0x8000,
  PVEC_BOOL_VECTOR = 0x10000,
  PVEC_BUFFER = 0x20000,
Gerd Moellmann's avatar
Gerd Moellmann committed
278
  PVEC_HASH_TABLE = 0x40000,
Gerd Moellmann's avatar
Gerd Moellmann committed
279 280 281 282 283
  PVEC_TYPE_MASK = 0x7fe00
  
#if 0 /* This is used to make the value of PSEUDOVECTOR_FLAG available to
	 GDB.  It doesn't work on OS Alpha.  Moved to a variable in
	 emacs.c.  */
284
  PVEC_FLAG = PSEUDOVECTOR_FLAG
Gerd Moellmann's avatar
Gerd Moellmann committed
285
#endif
286
};
287 288

/* For convenience, we also store the number of elements in these bits.  */
289
#define PSEUDOVECTOR_SIZE_MASK 0x1ff
Jim Blandy's avatar
Jim Blandy committed
290 291 292

/* These macros extract various sorts of values from a Lisp_Object.
 For example, if tem is a Lisp_Object whose type is Lisp_Cons,
293
 XCONS (tem) is the struct Lisp_Cons * pointing to the memory for that cons.  */
Jim Blandy's avatar
Jim Blandy committed
294 295 296 297 298 299 300 301 302 303 304 305

#ifdef NO_UNION_TYPE

/* One need to override this if there must be high bits set in data space
   (doing the result of the below & ((1 << (GCTYPE + 1)) - 1) would work
    on all machines, but would penalise machines which don't need it)
 */
#ifndef XTYPE
#define XTYPE(a) ((enum Lisp_Type) ((a) >> VALBITS))
#endif

#ifndef XSETTYPE
306
#define XSETTYPE(a, b) ((a)  =  XUINT (a) | ((EMACS_INT)(b) << VALBITS))
Jim Blandy's avatar
Jim Blandy committed
307 308
#endif

Karl Heuer's avatar
Karl Heuer committed
309 310 311
/* For integers known to be positive, XFASTINT provides fast retrieval
   and XSETFASTINT provides fast storage.  This takes advantage of the
   fact that Lisp_Int is 0.  */
312
#define XFASTINT(a) ((a) + 0)
Karl Heuer's avatar
Karl Heuer committed
313
#define XSETFASTINT(a, b) ((a) = (b))
Jim Blandy's avatar
Jim Blandy committed
314 315 316 317

/* Extract the value of a Lisp_Object as a signed integer.  */

#ifndef XINT   /* Some machines need to do this differently.  */
318
#define XINT(a) (((a) << (BITS_PER_EMACS_INT-VALBITS)) >> (BITS_PER_EMACS_INT-VALBITS))
Jim Blandy's avatar
Jim Blandy committed
319 320 321 322 323 324 325 326 327 328 329 330
#endif

/* Extract the value as an unsigned integer.  This is a basis
   for extracting it as a pointer to a structure in storage.  */

#ifndef XUINT
#define XUINT(a) ((a) & VALMASK)
#endif

#ifndef XPNTR
#ifdef HAVE_SHM
/* In this representation, data is found in two widely separated segments.  */
Jim Blandy's avatar
Jim Blandy committed
331
extern int pure_size;
Jim Blandy's avatar
Jim Blandy committed
332
#define XPNTR(a) \
Jim Blandy's avatar
Jim Blandy committed
333
  (XUINT (a) | (XUINT (a) > pure_size ? DATA_SEG_BITS : PURE_SEG_BITS))
Jim Blandy's avatar
Jim Blandy committed
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
#else /* not HAVE_SHM */
#ifdef DATA_SEG_BITS
/* This case is used for the rt-pc.
   In the diffs I was given, it checked for ptr = 0
   and did not adjust it in that case.
   But I don't think that zero should ever be found
   in a Lisp object whose data type says it points to something.  */
#define XPNTR(a) (XUINT (a) | DATA_SEG_BITS)
#else
#define XPNTR(a) XUINT (a)
#endif
#endif /* not HAVE_SHM */
#endif /* no XPNTR */

#ifndef XSET
#define XSET(var, type, ptr) \
350
   ((var) = ((EMACS_INT)(type) << VALBITS) + ((EMACS_INT) (ptr) & VALMASK))
Jim Blandy's avatar
Jim Blandy committed
351 352
#endif

353 354 355 356 357
/* Convert a C integer into a Lisp_Object integer.  */

#define make_number(N)		\
  ((((EMACS_INT) (N)) & VALMASK) | ((EMACS_INT) Lisp_Int) << VALBITS)

Jim Blandy's avatar
Jim Blandy committed
358 359 360 361 362 363 364 365 366 367
/* During garbage collection, XGCTYPE must be used for extracting types
 so that the mark bit is ignored.  XMARKBIT accesses the markbit.
 Markbits are used only in particular slots of particular structure types.
 Other markbits are always zero.
 Outside of garbage collection, all mark bits are always zero.  */

#ifndef XGCTYPE
#define XGCTYPE(a) ((enum Lisp_Type) (((a) >> VALBITS) & GCTYPEMASK))
#endif

Richard M. Stallman's avatar
Richard M. Stallman committed
368
#if VALBITS + GCTYPEBITS == BITS_PER_EMACS_INT - 1
Jim Blandy's avatar
Jim Blandy committed
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
/* Make XMARKBIT faster if mark bit is sign bit.  */
#ifndef XMARKBIT
#define XMARKBIT(a) ((a) < 0)
#endif
#endif /* markbit is sign bit */

#ifndef XMARKBIT
#define XMARKBIT(a) ((a) & MARKBIT)
#endif

#ifndef XSETMARKBIT
#define XSETMARKBIT(a,b) ((a) = ((a) & ~MARKBIT) | ((b) ? MARKBIT : 0))
#endif

#ifndef XMARK
#define XMARK(a) ((a) |= MARKBIT)
#endif

#ifndef XUNMARK
#define XUNMARK(a) ((a) &= ~MARKBIT)
#endif

#endif /* NO_UNION_TYPE */

#ifndef NO_UNION_TYPE

#define XTYPE(a) ((enum Lisp_Type) (a).u.type)
#define XSETTYPE(a, b) ((a).u.type = (char) (b))

Karl Heuer's avatar
Karl Heuer committed
398 399 400
/* For integers known to be positive, XFASTINT provides fast retrieval
   and XSETFASTINT provides fast storage.  This takes advantage of the
   fact that Lisp_Int is 0.  */
401
#define XFASTINT(a) ((a).i + 0)
Karl Heuer's avatar
Karl Heuer committed
402
#define XSETFASTINT(a, b) ((a).i = (b))
Jim Blandy's avatar
Jim Blandy committed
403 404 405

#ifdef EXPLICIT_SIGN_EXTEND
/* Make sure we sign-extend; compilers have been known to fail to do so.  */
406
#define XINT(a) (((a).i << (BITS_PER_INT-VALBITS)) >> (BITS_PER_INT-VALBITS))
Jim Blandy's avatar
Jim Blandy committed
407 408 409 410 411 412 413 414 415 416
#else
#define XINT(a) ((a).s.val)
#endif /* EXPLICIT_SIGN_EXTEND */

#define XUINT(a) ((a).u.val)
#define XPNTR(a) ((a).u.val)

#define XSET(var, vartype, ptr) \
   (((var).s.type = ((char) (vartype))), ((var).s.val = ((int) (ptr))))

417 418
extern Lisp_Object make_number ();

Jim Blandy's avatar
Jim Blandy committed
419 420 421 422 423 424 425 426 427 428 429 430 431 432
/* During garbage collection, XGCTYPE must be used for extracting types
 so that the mark bit is ignored.  XMARKBIT access the markbit.
 Markbits are used only in particular slots of particular structure types.
 Other markbits are always zero.
 Outside of garbage collection, all mark bits are always zero.  */

#define XGCTYPE(a) ((a).gu.type)
#define XMARKBIT(a) ((a).gu.markbit)
#define XSETMARKBIT(a,b) (XMARKBIT(a) = (b))
#define XMARK(a) (XMARKBIT(a) = 1)
#define XUNMARK(a) (XMARKBIT(a) = 0)

#endif /* NO_UNION_TYPE */

433
/* Extract a value or address from a Lisp_Object.  */
Jim Blandy's avatar
Jim Blandy committed
434

435
#define XCONS(a) (eassert (GC_CONSP(a)),(struct Lisp_Cons *) XPNTR(a))
Jim Blandy's avatar
Jim Blandy committed
436
#define XVECTOR(a) ((struct Lisp_Vector *) XPNTR(a))
437 438 439
#define XSTRING(a) (eassert (GC_STRINGP(a)),(struct Lisp_String *) XPNTR(a))
#define XSYMBOL(a) (eassert (GC_SYMBOLP(a)),(struct Lisp_Symbol *) XPNTR(a))
#define XFLOAT(a) (eassert (GC_FLOATP(a)),(struct Lisp_Float *) XPNTR(a))
440 441 442

/* Misc types.  */
#define XMISC(a)   ((union Lisp_Misc *) XPNTR(a))
Richard M. Stallman's avatar
Richard M. Stallman committed
443
#define XMISCTYPE(a)   (XMARKER (a)->type)
444
#define XMARKER(a) (&(XMISC(a)->u_marker))
445 446 447 448
#define XINTFWD(a) (&(XMISC(a)->u_intfwd))
#define XBOOLFWD(a) (&(XMISC(a)->u_boolfwd))
#define XOBJFWD(a) (&(XMISC(a)->u_objfwd))
#define XBUFFER_OBJFWD(a) (&(XMISC(a)->u_buffer_objfwd))
449
#define XBUFFER_LOCAL_VALUE(a) (&(XMISC(a)->u_buffer_local_value))
450
#define XOVERLAY(a) (&(XMISC(a)->u_overlay))
451
#define XKBOARD_OBJFWD(a) (&(XMISC(a)->u_kboard_objfwd))
Jim Blandy's avatar
Jim Blandy committed
452

453
/* Pseudovector types.  */
454 455 456 457
#define XPROCESS(a) (eassert (GC_PROCESSP(a)),(struct Lisp_Process *) XPNTR(a))
#define XWINDOW(a) (eassert (GC_WINDOWP(a)),(struct window *) XPNTR(a))
#define XSUBR(a) (eassert (GC_SUBRP(a)),(struct Lisp_Subr *) XPNTR(a))
#define XBUFFER(a) (eassert (GC_BUFFERP(a)),(struct buffer *) XPNTR(a))
458 459
#define XCHAR_TABLE(a) ((struct Lisp_Char_Table *) XPNTR(a))
#define XBOOL_VECTOR(a) ((struct Lisp_Bool_Vector *) XPNTR(a))
460 461 462


/* Construct a Lisp_Object from a value or address.  */
463

464 465
#define XSETINT(a, b) XSET (a, Lisp_Int, b)
#define XSETCONS(a, b) XSET (a, Lisp_Cons, b)
466
#define XSETVECTOR(a, b) XSET (a, Lisp_Vectorlike, b)
467 468 469
#define XSETSTRING(a, b) XSET (a, Lisp_String, b)
#define XSETSYMBOL(a, b) XSET (a, Lisp_Symbol, b)
#define XSETFLOAT(a, b) XSET (a, Lisp_Float, b)
470 471 472

/* Misc types.  */
#define XSETMISC(a, b) XSET (a, Lisp_Misc, b)
Richard M. Stallman's avatar
Richard M. Stallman committed
473
#define XSETMARKER(a, b) (XSETMISC (a, b), XMISCTYPE (a) = Lisp_Misc_Marker)
474 475 476 477 478 479 480 481 482 483

/* Pseudovector types.  */
#define XSETPSEUDOVECTOR(a, b, code) \
  (XSETVECTOR (a, b), XVECTOR (a)->size |= PSEUDOVECTOR_FLAG | (code))
#define XSETWINDOW_CONFIGURATION(a, b) \
  (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW_CONFIGURATION))
#define XSETPROCESS(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_PROCESS))
#define XSETWINDOW(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_WINDOW))
#define XSETSUBR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_SUBR))
#define XSETCOMPILED(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_COMPILED))
484
#define XSETBUFFER(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BUFFER))
485 486
#define XSETCHAR_TABLE(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_CHAR_TABLE))
#define XSETBOOL_VECTOR(a, b) (XSETPSEUDOVECTOR (a, b, PVEC_BOOL_VECTOR))
Jim Blandy's avatar
Jim Blandy committed
487

488
/* Basic data type for use of intervals.  See the macros in intervals.h.  */
489 490 491

struct interval
{
492
  /* The first group of entries deal with the tree structure.  */
493

494 495
  unsigned int total_length;	/* Length of myself and both children.  */
  unsigned int position;	/* Cache of interval's character position.  */
496 497 498 499 500
				/* This field is usually updated
				   simultaneously with an interval
				   traversal, there is no guaranty
				   that it is valid for a random
				   interval.  */
501 502
  struct interval *left;	/* Intervals which precede me.  */
  struct interval *right;	/* Intervals which succeed me.  */
503 504 505 506 507 508 509 510 511 512 513

  /* Parent in the tree, or the Lisp_Object containing this interval tree.

     The mark bit on the root interval of an interval tree says
     whether we have started (and possibly finished) marking the
     tree.  If GC comes across an interval tree whose root's parent
     field has its markbit set, it leaves the tree alone.

     You'd think we could store this information in the parent object
     somewhere (after all, that should be visited once and then
     ignored too, right?), but strings are GC'd strangely.  */
514 515 516 517 518 519
  union
  {
    struct interval *interval;
    Lisp_Object obj;
  } up;
  unsigned int up_obj : 1;
520 521 522

  /* The remaining components are `properties' of the interval.
     The first four are duplicates for things which can be on the list,
523
     for purposes of speed.  */
524

525 526 527
  unsigned int write_protect : 1;    /* Non-zero means can't modify.  */
  unsigned int visible : 1;	    /* Zero means don't display.  */
  unsigned int front_sticky : 1;    /* Non-zero means text inserted just
528
				       before this interval goes into it.  */
529
  unsigned int rear_sticky : 1;	    /* Likewise for just after it.  */
530

531 532 533 534 535
  /* Properties of this interval.
     The mark bit on this field says whether this particular interval
     tree node has been visited.  Since intervals should never be
     shared, GC aborts if it seems to have visited an interval twice.  */
  Lisp_Object plist;
536 537 538 539 540 541
};

typedef struct interval *INTERVAL;

/* Complain if object is not string or buffer type */
#define CHECK_STRING_OR_BUFFER(x, i) \
542
  { if (!STRINGP ((x)) && !BUFFERP ((x))) \
543 544 545
      x = wrong_type_argument (Qbuffer_or_string_p, (x)); }

/* Macro used to conditionally compile intervals into certain data
546
   structures.  See, e.g., struct Lisp_String below.  */
547 548
#define DECLARE_INTERVALS INTERVAL intervals;

549
/* Macro used to conditionally compile interval initialization into
550
   certain code.  See, e.g., alloc.c.  */
551 552 553
#define INITIALIZE_INTERVAL(ptr,val) ptr->intervals = val


Jim Blandy's avatar
Jim Blandy committed
554 555 556 557
/* In a cons, the markbit of the car is the gc mark bit */

struct Lisp_Cons
  {
558 559 560 561 562
    /* Please do not use the names of these elements in code other
       than the core lisp implementation.  Use XCAR and XCDR below.  */
#ifdef HIDE_LISP_IMPLEMENTATION
    Lisp_Object car_, cdr_;
#else
Jim Blandy's avatar
Jim Blandy committed
563
    Lisp_Object car, cdr;
564
#endif
Jim Blandy's avatar
Jim Blandy committed
565 566
  };

567
/* Take the car or cdr of something known to be a cons cell.  */
568 569 570 571
#ifdef HIDE_LISP_IMPLEMENTATION
#define XCAR(c) (XCONS ((c))->car_)
#define XCDR(c) (XCONS ((c))->cdr_)
#else
572 573
#define XCAR(c) (XCONS ((c))->car)
#define XCDR(c) (XCONS ((c))->cdr)
574
#endif
575 576 577 578 579 580 581 582 583 584 585 586

/* Take the car or cdr of something whose type is not known.  */
#define CAR(c)					\
 (CONSP ((c)) ? XCAR ((c))			\
  : NILP ((c)) ? Qnil				\
  : wrong_type_argument (Qlistp, (c)))

#define CDR(c)					\
 (CONSP ((c)) ? XCDR ((c))			\
  : NILP ((c)) ? Qnil				\
  : wrong_type_argument (Qlistp, (c)))

Jim Blandy's avatar
Jim Blandy committed
587 588 589 590 591 592 593 594 595 596
/* Like a cons, but records info on where the text lives that it was read from */
/* This is not really in use now */

struct Lisp_Buffer_Cons
  {
    Lisp_Object car, cdr;
    struct buffer *buffer;
    int bufpos;
  };

Kenichi Handa's avatar
Kenichi Handa committed
597 598 599 600 601 602 603 604 605 606 607
/* Nonzero if STR is a multibyte string.  */
#define STRING_MULTIBYTE(STR)  \
  (XSTRING (STR)->size_byte >= 0)

/* Return the length in bytes of STR.  */
#define STRING_BYTES(STR)  \
  ((STR)->size_byte < 0 ? (STR)->size : (STR)->size_byte)

/* Set the length in bytes of STR.  */
#define SET_STRING_BYTES(STR, SIZE)  ((STR)->size_byte = (SIZE))

Jim Blandy's avatar
Jim Blandy committed
608 609 610 611
/* In a string or vector, the sign bit of the `size' is the gc mark bit */

struct Lisp_String
  {
612
    EMACS_INT size;
613
    EMACS_INT size_byte;
614
    DECLARE_INTERVALS		/* `data' field must be last.  */
615
    unsigned char *data;
Jim Blandy's avatar
Jim Blandy committed
616 617
  };

Karl Heuer's avatar
Karl Heuer committed
618
/* If a struct is made to look like a vector, this macro returns the length
619 620 621 622
   of the shortest vector that would hold that struct.  */
#define VECSIZE(type) ((sizeof (type) - (sizeof (struct Lisp_Vector)  \
                                         - sizeof (Lisp_Object))      \
                        + sizeof(Lisp_Object) - 1) /* round up */     \
Karl Heuer's avatar
Karl Heuer committed
623 624
		       / sizeof (Lisp_Object))

Jim Blandy's avatar
Jim Blandy committed
625 626
struct Lisp_Vector
  {
627
    EMACS_INT size;
Jim Blandy's avatar
Jim Blandy committed
628 629 630 631
    struct Lisp_Vector *next;
    Lisp_Object contents[1];
  };

632 633 634 635 636 637 638 639 640 641
/* A char table is a kind of vectorlike, with contents are like a
   vector but with a few other slots.  For some purposes, it makes
   sense to handle a chartable with type struct Lisp_Vector.  An
   element of a char table can be any Lisp objects, but if it is a sub
   char-table, we treat it a table that contains information of a
   group of characters of the same charsets or a specific character of
   a charset.  A sub char-table has the same structure as a char table
   except for that the former omits several slots at the tail.  A sub
   char table appears only in an element of a char table, and there's
   no way to access it directly from Emacs Lisp program.  */
642

643 644
/* This is the number of slots that apply to characters or character
   sets.  The first 128 are for ASCII, the next 128 are for 8-bit
645 646 647
   European characters, and the last 128 are for multibyte characters.
   The first 256 are indexed by the code itself, but the last 128 are
   indexed by (charset-id + 128).  */
648 649 650 651 652
#define CHAR_TABLE_ORDINARY_SLOTS 384

/* This is the number of slots that apply to characters of ASCII and
   8-bit Europeans only.  */
#define CHAR_TABLE_SINGLE_BYTE_SLOTS 256
653

654 655 656 657 658 659 660 661 662 663 664 665
/* This is the number of slots that every char table must have.  This
   counts the ordinary slots and the top, defalt, parent, and purpose
   slots.  */
#define CHAR_TABLE_STANDARD_SLOTS (CHAR_TABLE_ORDINARY_SLOTS + 4)

/* This is the number of slots that apply to position-code-1 and
   position-code-2 of a multibyte character at the 2nd and 3rd level
   sub char tables respectively.  */
#define SUB_CHAR_TABLE_ORDINARY_SLOTS 128

/* This is the number of slots that every sub char table must have.
   This counts the ordinary slots and the top and defalt slot.  */
666
#define SUB_CHAR_TABLE_STANDARD_SLOTS (SUB_CHAR_TABLE_ORDINARY_SLOTS + 2)
667 668 669 670 671 672

/* Return the number of "extra" slots in the char table CT.  */

#define CHAR_TABLE_EXTRA_SLOTS(CT)	\
  (((CT)->size & PSEUDOVECTOR_SIZE_MASK) - CHAR_TABLE_STANDARD_SLOTS)

673
/* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
674 675 676
   and 8-bit Europeans characters.  For these characters, do not check
   validity of CT.  Do not follow parent.  */
#define CHAR_TABLE_REF(CT, IDX)				\
677
  ((IDX) >= 0 && (IDX) < CHAR_TABLE_SINGLE_BYTE_SLOTS	\
678 679
   ? (!NILP (XCHAR_TABLE (CT)->contents[IDX])		\
      ? XCHAR_TABLE (CT)->contents[IDX]			\
680
      : XCHAR_TABLE (CT)->defalt)			\
681
   : Faref (CT, make_number (IDX)))
682

683 684 685 686 687 688 689 690 691 692 693 694 695
/* Almost equivalent to Faref (CT, IDX) with optimization for ASCII
   and 8-bit Europeans characters.  However, if the result is nil,
   return IDX.

   For these characters, do not check validity of CT
   and do not follow parent.  */
#define CHAR_TABLE_TRANSLATE(CT, IDX)			\
  ((IDX) < CHAR_TABLE_SINGLE_BYTE_SLOTS			\
   ? (!NILP (XCHAR_TABLE (CT)->contents[IDX])		\
      ? XINT (XCHAR_TABLE (CT)->contents[IDX])		\
      : IDX)						\
   : char_table_translate (CT, IDX))

696
/* Equivalent to Faset (CT, IDX, VAL) with optimization for ASCII and
697 698 699 700 701 702 703
   8-bit Europeans characters.  Do not check validity of CT.  */
#define CHAR_TABLE_SET(CT, IDX, VAL)			\
  do {							\
    if (XFASTINT (IDX) < CHAR_TABLE_SINGLE_BYTE_SLOTS)	\
      XCHAR_TABLE (CT)->contents[XFASTINT (IDX)] = VAL;	\
    else						\
      Faset (CT, IDX, VAL);				\
704 705
  } while (0)

706 707 708 709
struct Lisp_Char_Table
  {
    /* This is the vector's size field, which also holds the
       pseudovector type information.  It holds the size, too.
710 711
       The size counts the top, defalt, purpose, and parent slots.
       The last three are not counted if this is a sub char table.  */
712 713
    EMACS_INT size;
    struct Lisp_Vector *next;
714 715 716
    /* This holds a flag to tell if this is a top level char table (t)
       or a sub char table (nil).  */
    Lisp_Object top;
717 718 719
    /* This holds a default value,
       which is used whenever the value for a specific character is nil.  */
    Lisp_Object defalt;
720 721 722 723 724 725
    /* This holds an actual value of each element.  A sub char table
       has only SUB_CHAR_TABLE_ORDINARY_SLOTS number of elements.  */
    Lisp_Object contents[CHAR_TABLE_ORDINARY_SLOTS];

    /* A sub char table doesn't has the following slots.  */

726 727 728 729
    /* This points to another char table, which we inherit from
       when the value for a specific character is nil.
       The `defalt' slot takes precedence over this.  */
    Lisp_Object parent;
730 731 732 733
    /* This should be a symbol which says what kind of use
       this char-table is meant for.
       Typically now the values can be `syntax-table' and `display-table'.  */
    Lisp_Object purpose;
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
    /* These hold additional data.  */
    Lisp_Object extras[1];
  };

/* A boolvector is a kind of vectorlike, with contents are like a string.  */
struct Lisp_Bool_Vector
  {
    /* This is the vector's size field.  It doesn't have the real size,
       just the subtype information.  */
    EMACS_INT vector_size;
    struct Lisp_Vector *next;
    /* This is the size in bits.  */
    EMACS_INT size;
    /* This contains the actual bits, packed into bytes.  */
    unsigned char data[1];
  };

Jim Blandy's avatar
Jim Blandy committed
751 752 753 754 755 756 757 758
/* In a symbol, the markbit of the plist is used as the gc mark bit */

struct Lisp_Symbol
  {
    struct Lisp_String *name;
    Lisp_Object value;
    Lisp_Object function;
    Lisp_Object plist;
759
    Lisp_Object obarray;
Jim Blandy's avatar
Jim Blandy committed
760 761 762
    struct Lisp_Symbol *next;	/* -> next symbol in this obarray bucket */
  };

763 764 765 766 767 768 769
/* This structure describes a built-in function.
   It is generated by the DEFUN macro only.
   defsubr makes it into a Lisp object.

   This type is treated in most respects as a pseudovector,
   but since we never dynamically allocate or free them,
   we don't need a next-vector field.  */
770

Jim Blandy's avatar
Jim Blandy committed
771 772
struct Lisp_Subr
  {
773
    EMACS_INT size;
Jim Blandy's avatar
Jim Blandy committed
774 775 776 777 778 779
    Lisp_Object (*function) ();
    short min_args, max_args;
    char *symbol_name;
    char *prompt;
    char *doc;
  };
Gerd Moellmann's avatar
Gerd Moellmann committed
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883


/***********************************************************************
			     Hash Tables
 ***********************************************************************/

/* The structure of a Lisp hash table.  */

struct Lisp_Hash_Table
{
  /* Vector fields.  The hash table code doesn't refer to these.  */
  EMACS_INT size;
  struct Lisp_Vector *vec_next;
  
  /* Function used to compare keys.  */
  Lisp_Object test;

  /* Nil if table is non-weak.  Otherwise a symbol describing the
     weakness of the table.  */
  Lisp_Object weak;
  
  /* When the table is resized, and this is an integer, compute the
     new size by adding this to the old size.  If a float, compute the
     new size by multiplying the old size with this factor.  */
  Lisp_Object rehash_size;

  /* Resize hash table when number of entries/ table size is >= this
     ratio, a float.  */
  Lisp_Object rehash_threshold;

  /* Number of key/value entries in the table.  */
  Lisp_Object count;

  /* Vector of keys and values.  The key of item I is found at index
     2 * I, the value is found at index 2 * I + 1.  */
  Lisp_Object key_and_value;

  /* Vector of hash codes.. If hash[I] is nil, this means that that
     entry I is unused.  */
  Lisp_Object hash;

  /* Vector used to chain entries.  If entry I is free, next[I] is the
     entry number of the next free item.  If entry I is non-free,
     next[I] is the index of the next entry in the collision chain.  */
  Lisp_Object next;

  /* Index of first free entry in free list.  */
  Lisp_Object next_free;

  /* Bucket vector.  A non-nil entry is the index of the first item in
     a collision chain.  This vector's size can be larger than the
     hash table size to reduce collisions.  */
  Lisp_Object index;

  /* Next weak hash table if this is a weak hash table.  The head
     of the list is in Vweak_hash_tables.  */
  Lisp_Object next_weak;

  /* User-supplied hash function, or nil.  */
  Lisp_Object user_hash_function;

  /* User-supplied key comparison function, or nil.  */
  Lisp_Object user_cmp_function;

  /* C function to compare two keys.  */
  int (* cmpfn) P_ ((struct Lisp_Hash_Table *, Lisp_Object,
		     unsigned, Lisp_Object, unsigned));

  /* C function to compute hash code.  */
  unsigned (* hashfn) P_ ((struct Lisp_Hash_Table *, Lisp_Object));
};


#define XHASH_TABLE(OBJ) \
     ((struct Lisp_Hash_Table *) XPNTR (OBJ))

#define XSET_HASH_TABLE(VAR, PTR) \
     (XSETPSEUDOVECTOR (VAR, PTR, PVEC_HASH_TABLE))

#define HASH_TABLE_P(OBJ)  PSEUDOVECTORP (OBJ, PVEC_HASH_TABLE)
#define GC_HASH_TABLE_P(x) GC_PSEUDOVECTORP (x, PVEC_HASH_TABLE)

#define CHECK_HASH_TABLE(x, i)					\
     do								\
       {							\
	 if (!HASH_TABLE_P ((x)))				\
	   x = wrong_type_argument (Qhash_table_p, (x));	\
       }							\
     while (0)

/* Default size for hash tables if not specified.  */

#define DEFAULT_HASH_SIZE 65

/* Default threshold specifying when to resize a hash table.  The
   value gives the ratio of current entries in the hash table and the
   size of the hash table.  */

#define DEFAULT_REHASH_THRESHOLD 0.8

/* Default factor by which to increase the size of a hash table.  */

#define DEFAULT_REHASH_SIZE 1.5

884

885 886
/* These structures are used for various misc types.  */

887 888 889
/* A miscellaneous object, when it's on the free list.  */
struct Lisp_Free
  {
890 891
    int type : 16;	/* = Lisp_Misc_Free */
    int spacer : 16;
892 893
    union Lisp_Misc *chain;
  };
Jim Blandy's avatar
Jim Blandy committed
894

Erik Naggum's avatar
Erik Naggum committed
895
/* In a marker, the markbit of the chain field is used as the gc mark bit.  */
Jim Blandy's avatar
Jim Blandy committed
896
struct Lisp_Marker
897 898 899 900 901 902
{
  int type : 16;		/* = Lisp_Misc_Marker */
  int spacer : 15;
  /* 1 means normal insertion at the marker's position
     leaves the marker after the inserted text.  */
  unsigned int insertion_type : 1;
903 904
  /* This is the buffer that the marker points into,
     or 0 if it points nowhere.  */
905
  struct buffer *buffer;
906 907 908 909 910 911

  /* The remaining fields are meaningless in a marker that
     does not point anywhere.  */

  /* For markers that point somewhere,
     this is used to chain of all the markers in a given buffer.  */
912
  Lisp_Object chain;
913 914
  /* This is the char position where the marker points.  */
  int charpos;
915 916
  /* This is the byte position.  */
  int bytepos;
917
};
Jim Blandy's avatar
Jim Blandy committed
918

919 920 921 922 923
/* Forwarding pointer to an int variable.
   This is allowed only in the value cell of a symbol,
   and it means that the symbol's value really lives in the
   specified int variable.  */
struct Lisp_Intfwd
924
  {
925 926
    int type : 16;	/* = Lisp_Misc_Intfwd */
    int spacer : 16;
927 928 929 930 931 932 933 934 935
    int *intvar;
  };

/* Boolean forwarding pointer to an int variable.
   This is like Lisp_Intfwd except that the ostensible
   "value" of the symbol is t if the int variable is nonzero,
   nil if it is zero.  */
struct Lisp_Boolfwd
  {
936 937
    int type : 16;	/* = Lisp_Misc_Boolfwd */
    int spacer : 16;
938 939 940 941 942 943 944 945 946
    int *boolvar;
  };

/* Forwarding pointer to a Lisp_Object variable.
   This is allowed only in the value cell of a symbol,
   and it means that the symbol's value really lives in the
   specified variable.  */
struct Lisp_Objfwd
  {
947 948
    int type : 16;	/* = Lisp_Misc_Objfwd */
    int spacer : 16;
949 950 951 952 953 954 955
    Lisp_Object *objvar;
  };

/* Like Lisp_Objfwd except that value lives in a slot in the
   current buffer.  Value is byte index of slot within buffer.  */
struct Lisp_Buffer_Objfwd
  {
956 957
    int type : 16;	/* = Lisp_Misc_Buffer_Objfwd */
    int spacer : 16;
958
    int offset;
959 960
  };

Richard M. Stallman's avatar
Richard M. Stallman committed
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/* struct Lisp_Buffer_Local_Value is used in a symbol value cell when
   the symbol has buffer-local or frame-local bindings.  (Exception:
   some buffer-local variables are built-in, with their values stored
   in the buffer structure itself.  They are handled differently,
   using struct Lisp_Buffer_Objfwd.)

   The `realvalue' slot holds the variable's current value, or a
   forwarding pointer to where that value is kept.  This value is the
   one that corresponds to the loaded binding.  To read or set the
   variable, you must first make sure the right binding is loaded;
   then you can access the value in (or through) `realvalue'.
   
   `buffer' and `frame' are the buffer and frame for which the loaded
   binding was found.  If those have changed, to make sure the right
   binding is loaded it is necessary to find which binding goes with
   the current buffer and selected frame, then load it.  To load it,
   first unload the previous binding, then copy the value of the new
   binding into `realvalue' (or through it).  Also update
   LOADED-BINDING to point to the newly loaded binding.
980 981

   Lisp_Misc_Buffer_Local_Value and Lisp_Misc_Some_Buffer_Local_Value
Richard M. Stallman's avatar
Richard M. Stallman committed
982 983 984 985 986
   both use this kind of structure.  With the former, merely setting
   the variable creates a local binding for the current buffer.  With
   the latter, setting the variable does not do that; only
   make-local-variable does that.  */

987 988
struct Lisp_Buffer_Local_Value
  {
989 990 991
    int type : 16;      /* = Lisp_Misc_Buffer_Local_Value
			   or Lisp_Misc_Some_Buffer_Local_Value */
    int spacer : 13;
Richard M. Stallman's avatar
Richard M. Stallman committed
992 993 994

    /* 1 means this variable is allowed to have frame-local bindings,
       so check for them when looking for the proper binding.  */
995
    unsigned int check_frame : 1;
Richard M. Stallman's avatar
Richard M. Stallman committed
996 997
    /* 1 means that the binding now loaded was found
       as a local binding for the buffer in the `buffer' slot.  */
998
    unsigned int found_for_buffer : 1;
Richard M. Stallman's avatar
Richard M. Stallman committed
999 1000
    /* 1 means that the binding now loaded was found
       as a local binding for the frame in the `frame' slot.  */
1001 1002
    unsigned int found_for_frame : 1;
    Lisp_Object realvalue;
Richard M. Stallman's avatar
Richard M. Stallman committed
1003
    /* The buffer and frame for which the loaded binding was found.  */
1004
    Lisp_Object buffer, frame;
Richard M. Stallman's avatar
Richard M. Stallman committed
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

    /* A cons cell, (LOADED-BINDING . DEFAULT-VALUE).

       LOADED-BINDING is the binding now loaded.  It is a cons cell
       whose cdr is the binding's value.  The cons cell may be an
       element of a buffer's local-variable alist, or an element of a
       frame's parameter alist, or it may be this cons cell.

       DEFAULT-VALUE is the variable's default value, seen when the
       current buffer and selected frame do not have their own
       bindings for the variable.  When the default binding is loaded,
       LOADED-BINDING is actually this very cons cell; thus, its car
       points to itself.  */
1018
    Lisp_Object cdr;
1019 1020
  };

1021 1022 1023 1024 1025
/* In an overlay object, the mark bit of the plist is used as the GC mark.
   START and END are markers in the overlay's buffer, and
   PLIST is the overlay's property list.  */
struct Lisp_Overlay
  {
1026 1027
    int type : 16;	/* = Lisp_Misc_Overlay */
    int spacer : 16;
1028 1029
    Lisp_Object start, end, plist;
  };
1030

1031
/* Like Lisp_Objfwd except that value lives in a slot in the
1032 1033
   current kboard.  */
struct Lisp_Kboard_Objfwd
1034
  {
1035
    int type : 16;	/* = Lisp_Misc_Kboard_Objfwd */
1036 1037 1038 1039
    int spacer : 16;
    int offset;
  };

1040

Richard M. Stallman's avatar
Richard M. Stallman committed
1041 1042 1043
/* To get the type field of a union Lisp_Misc, use XMISCTYPE.
   It uses one of these struct subtypes to get the type field.  */

1044 1045 1046 1047
union Lisp_Misc
  {
    struct Lisp_Free u_free;
    struct Lisp_Marker u_marker;
1048 1049 1050 1051
    struct Lisp_Intfwd u_intfwd;
    struct Lisp_Boolfwd u_boolfwd;
    struct Lisp_Objfwd u_objfwd;
    struct Lisp_Buffer_Objfwd u_buffer_objfwd;
1052
    struct Lisp_Buffer_Local_Value u_buffer_local_value;
1053
    struct Lisp_Overlay u_overlay;
1054
    struct Lisp_Kboard_Objfwd u_kboard_objfwd;
1055
  };
1056

1057
/* Lisp floating point type */
Jim Blandy's avatar
Jim Blandy committed
1058 1059
struct Lisp_Float
  {
1060
    Lisp_Object type;		/* essentially used for mark-bit
Jim Blandy's avatar
Jim Blandy committed
1061
				   and chaining when on free-list */
1062 1063 1064
#ifdef HIDE_LISP_IMPLEMENTATION
    double data_;
#else
1065
    double data;
1066
#endif
Jim Blandy's avatar
Jim Blandy committed
1067
  };
1068 1069 1070 1071 1072 1073

#ifdef HIDE_LISP_IMPLEMENTATION
#define XFLOAT_DATA(f)	(XFLOAT (f)->data_)
#else
#define XFLOAT_DATA(f)	(XFLOAT (f)->data)
#endif
Jim Blandy's avatar
Jim Blandy committed
1074 1075

/* A character, declared with the following typedef, is a member
1076
   of some character set associated with the current buffer.  */
1077 1078
#ifndef _UCHAR_T  /* Protect against something in ctab.h on AIX.  */
#define _UCHAR_T
Jim Blandy's avatar
Jim Blandy committed
1079
typedef unsigned char UCHAR;
1080
#endif
Jim Blandy's avatar
Jim Blandy committed
1081 1082 1083 1084 1085 1086 1087 1088 1089

/* Meanings of slots in a Lisp_Compiled:  */

#define COMPILED_ARGLIST 0
#define COMPILED_BYTECODE 1
#define COMPILED_CONSTANTS 2
#define COMPILED_STACK_DEPTH 3
#define COMPILED_DOC_STRING 4
#define COMPILED_INTERACTIVE 5
1090

1091 1092
/* Flag bits in a character.  These also get used in termhooks.h.
   Richard Stallman <rms@gnu.ai.mit.edu> thinks that MULE
1093 1094 1095 1096 1097 1098 1099 1100
   (MUlti-Lingual Emacs) might need 22 bits for the character value
   itself, so we probably shouldn't use any bits lower than 0x0400000.  */
#define CHAR_ALT   (0x0400000)
#define CHAR_SUPER (0x0800000)
#define CHAR_HYPER (0x1000000)
#define CHAR_SHIFT (0x2000000)
#define CHAR_CTL   (0x4000000)
#define CHAR_META  (0x8000000)
1101

1102 1103 1104 1105
#define CHAR_MODIFIER_MASK \
  (CHAR_ALT | CHAR_SUPER | CHAR_HYPER  | CHAR_SHIFT | CHAR_CTL | CHAR_META)


1106 1107 1108 1109
/* Actually, the current Emacs uses 19 bits for the character value
   itself.  */
#define CHARACTERBITS 19

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/* The maximum byte size consumed by push_key_description.
   All callers should assure that at least this size of memory is
   allocated at the place pointed by the second argument.

   Thers are 6 modifiers, each consumes 2 chars.
   The octal form of a character code consumes
   (1 + CHARACTERBITS / 3 + 1) chars (including backslash at the head).
   We need one more byte for string terminator `\0'.  */
#define KEY_DESCRIPTION_SIZE ((2 * 6) + 1 + (CHARACTERBITS / 3) + 1 + 1)

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
#ifdef USE_X_TOOLKIT
#ifdef NO_UNION_TYPE
/* Use this for turning a (void *) into a Lisp_Object, as when the
   Lisp_Object is passed into a toolkit callback function.  */
#define VOID_TO_LISP(larg,varg) \
  do { ((larg) = ((Lisp_Object) (varg))); } while (0)
#define CVOID_TO_LISP VOID_TO_LISP

/* Use this for turning a Lisp_Object into a  (void *), as when the
   Lisp_Object is passed into a toolkit callback function.  */
#define LISP_TO_VOID(larg) ((void *) (larg))
#define LISP_TO_CVOID(varg) ((const void *) (larg))

#else /* not NO_UNION_TYPE */
/* Use this for turning a (void *) into a Lisp_Object, as when the
  Lisp_Object is passed into a toolkit callback function.  */
#define VOID_TO_LISP(larg,varg) \
  do { ((larg).v = (void *) (varg)); } while (0)
#define CVOID_TO_LISP(larg,varg) \
  do { ((larg).cv = (const void *) (varg)); } while (0)

/* Use this for turning a Lisp_Object into a  (void *), as when the
   Lisp_Object is passed into a toolkit callback function.  */
#define LISP_TO_VOID(larg) ((larg).v)
#define LISP_TO_CVOID(larg) ((larg).cv)
#endif /* not NO_UNION_TYPE */
#endif /* USE_X_TOOLKIT */

1148 1149 1150

/* The glyph datatype, used to represent characters on the display.  */

1151 1152 1153 1154 1155 1156 1157
/* Glyph code to use as an index to the glyph table.  If it is out of
   range for the glyph table, or the corresonding element in the table
   is nil, the low 8 bits are the single byte character code, and the
   bits above are the numeric face ID.  If FID is the face ID of a
   glyph on a frame F, then F->display.x->faces[FID] contains the
   description of that face.  This is an int instead of a short, so we
   can support a good bunch of face ID's (2^(31 - 8)); given that we
1158
   have no mechanism for tossing unused frame face ID's yet, we'll
1159 1160 1161 1162
   probably run out of 255 pretty quickly.
   This is always -1 for a multibyte character.  */
#define GLYPH int

1163
/* Mask bits for face.  */
1164 1165 1166
#define GLYPH_MASK_FACE    0x7FFFFF00
 /* Mask bits for character code.  */
#define GLYPH_MASK_CHAR    0x000000FF /* The lowest 8 bits */
1167

1168 1169
/* The FAST macros assume that we already know we're in an X window.  */

1170 1171
/* Set a character code and a face ID in a glyph G.  */
#define FAST_MAKE_GLYPH(char, face) ((char) | ((face) << 8))
1172 1173

/* Return a glyph's character code.  */
1174
#define FAST_GLYPH_CHAR(glyph) ((glyph) & GLYPH_MASK_CHAR)
1175 1176

/* Return a glyph's face ID.  */
1177