cl-extra.el 32.2 KB
Newer Older
Richard M. Stallman's avatar
Richard M. Stallman committed
1 2 3 4 5 6 7 8 9 10 11 12
;; cl-extra.el --- Common Lisp extensions for GNU Emacs Lisp (part two)

;; Copyright (C) 1993 Free Software Foundation, Inc.

;; Author: Dave Gillespie <daveg@synaptics.com>
;; Version: 2.02
;; Keywords: extensions

;; This file is part of GNU Emacs.

;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
Karl Heuer's avatar
Karl Heuer committed
13
;; the Free Software Foundation; either version 2, or (at your option)
Richard M. Stallman's avatar
Richard M. Stallman committed
14 15 16 17 18 19 20 21 22 23 24
;; any later version.

;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING.  If not, write to
;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.

Richard M. Stallman's avatar
Richard M. Stallman committed
25
;;; Commentary:
Richard M. Stallman's avatar
Richard M. Stallman committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

;; These are extensions to Emacs Lisp that provide a degree of
;; Common Lisp compatibility, beyond what is already built-in
;; in Emacs Lisp.
;;
;; This package was written by Dave Gillespie; it is a complete
;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
;;
;; This package works with Emacs 18, Emacs 19, and Lucid Emacs 19.
;;
;; Bug reports, comments, and suggestions are welcome!

;; This file contains portions of the Common Lisp extensions
;; package which are autoloaded since they are relatively obscure.

;; See cl.el for Change Log.


Richard M. Stallman's avatar
Richard M. Stallman committed
44
;;; Code:
Richard M. Stallman's avatar
Richard M. Stallman committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

(or (memq 'cl-19 features)
    (error "Tried to load `cl-extra' before `cl'!"))


;;; We define these here so that this file can compile without having
;;; loaded the cl.el file already.

(defmacro cl-push (x place) (list 'setq place (list 'cons x place)))
(defmacro cl-pop (place)
  (list 'car (list 'prog1 place (list 'setq place (list 'cdr place)))))

(defvar cl-emacs-type)


;;; Type coercion.

(defun coerce (x type)
  "Coerce OBJECT to type TYPE.
TYPE is a Common Lisp type specifier."
  (cond ((eq type 'list) (if (listp x) x (append x nil)))
	((eq type 'vector) (if (vectorp x) x (vconcat x)))
	((eq type 'string) (if (stringp x) x (concat x)))
	((eq type 'array) (if (arrayp x) x (vconcat x)))
	((and (eq type 'character) (stringp x) (= (length x) 1)) (aref x 0))
	((and (eq type 'character) (symbolp x)) (coerce (symbol-name x) type))
	((eq type 'float) (float x))
	((typep x type) x)
	(t (error "Can't coerce %s to type %s" x type))))


;;; Predicates.

(defun equalp (x y)
  "T if two Lisp objects have similar structures and contents.
This is like `equal', except that it accepts numerically equal
numbers of different types (float vs. integer), and also compares
strings case-insensitively."
  (cond ((eq x y) t)
	((stringp x)
	 (and (stringp y) (= (length x) (length y))
	      (or (equal x y)
		  (equal (downcase x) (downcase y)))))   ; lazy but simple!
	((numberp x)
	 (and (numberp y) (= x y)))
	((consp x)
	 (while (and (consp x) (consp y) (equalp (cl-pop x) (cl-pop y))))
	 (and (not (consp x)) (equalp x y)))
	((vectorp x)
	 (and (vectorp y) (= (length x) (length y))
	      (let ((i (length x)))
		(while (and (>= (setq i (1- i)) 0)
			    (equalp (aref x i) (aref y i))))
		(< i 0))))
	(t (equal x y))))


;;; Control structures.

(defun cl-mapcar-many (cl-func cl-seqs)
  (if (cdr (cdr cl-seqs))
      (let* ((cl-res nil)
	     (cl-n (apply 'min (mapcar 'length cl-seqs)))
	     (cl-i 0)
	     (cl-args (copy-sequence cl-seqs))
	     cl-p1 cl-p2)
	(setq cl-seqs (copy-sequence cl-seqs))
	(while (< cl-i cl-n)
	  (setq cl-p1 cl-seqs cl-p2 cl-args)
	  (while cl-p1
	    (setcar cl-p2
		    (if (consp (car cl-p1))
			(prog1 (car (car cl-p1))
			  (setcar cl-p1 (cdr (car cl-p1))))
		      (aref (car cl-p1) cl-i)))
	    (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)))
	  (cl-push (apply cl-func cl-args) cl-res)
	  (setq cl-i (1+ cl-i)))
	(nreverse cl-res))
    (let ((cl-res nil)
	  (cl-x (car cl-seqs))
	  (cl-y (nth 1 cl-seqs)))
      (let ((cl-n (min (length cl-x) (length cl-y)))
	    (cl-i -1))
	(while (< (setq cl-i (1+ cl-i)) cl-n)
	  (cl-push (funcall cl-func
			    (if (consp cl-x) (cl-pop cl-x) (aref cl-x cl-i))
			    (if (consp cl-y) (cl-pop cl-y) (aref cl-y cl-i)))
		   cl-res)))
      (nreverse cl-res))))

(defun map (cl-type cl-func cl-seq &rest cl-rest)
  "Map a function across one or more sequences, returning a sequence.
TYPE is the sequence type to return, FUNC is the function, and SEQS
are the argument sequences."
  (let ((cl-res (apply 'mapcar* cl-func cl-seq cl-rest)))
    (and cl-type (coerce cl-res cl-type))))

(defun maplist (cl-func cl-list &rest cl-rest)
  "Map FUNC to each sublist of LIST or LISTS.
Like `mapcar', except applies to lists and their cdr's rather than to
the elements themselves."
  (if cl-rest
      (let ((cl-res nil)
	    (cl-args (cons cl-list (copy-sequence cl-rest)))
	    cl-p)
	(while (not (memq nil cl-args))
	  (cl-push (apply cl-func cl-args) cl-res)
	  (setq cl-p cl-args)
	  (while cl-p (setcar cl-p (cdr (cl-pop cl-p)) )))
	(nreverse cl-res))
    (let ((cl-res nil))
      (while cl-list
	(cl-push (funcall cl-func cl-list) cl-res)
	(setq cl-list (cdr cl-list)))
      (nreverse cl-res))))

(defun mapc (cl-func cl-seq &rest cl-rest)
  "Like `mapcar', but does not accumulate values returned by the function."
  (if cl-rest
      (apply 'map nil cl-func cl-seq cl-rest)
    (mapcar cl-func cl-seq))
  cl-seq)

(defun mapl (cl-func cl-list &rest cl-rest)
  "Like `maplist', but does not accumulate values returned by the function."
  (if cl-rest
      (apply 'maplist cl-func cl-list cl-rest)
    (let ((cl-p cl-list))
      (while cl-p (funcall cl-func cl-p) (setq cl-p (cdr cl-p)))))
  cl-list)

(defun mapcan (cl-func cl-seq &rest cl-rest)
  "Like `mapcar', but nconc's together the values returned by the function."
  (apply 'nconc (apply 'mapcar* cl-func cl-seq cl-rest)))

(defun mapcon (cl-func cl-list &rest cl-rest)
  "Like `maplist', but nconc's together the values returned by the function."
  (apply 'nconc (apply 'maplist cl-func cl-list cl-rest)))

(defun some (cl-pred cl-seq &rest cl-rest)
  "Return true if PREDICATE is true of any element of SEQ or SEQs.
If so, return the true (non-nil) value returned by PREDICATE."
  (if (or cl-rest (nlistp cl-seq))
      (catch 'cl-some
	(apply 'map nil
	       (function (lambda (&rest cl-x)
			   (let ((cl-res (apply cl-pred cl-x)))
			     (if cl-res (throw 'cl-some cl-res)))))
	       cl-seq cl-rest) nil)
    (let ((cl-x nil))
      (while (and cl-seq (not (setq cl-x (funcall cl-pred (cl-pop cl-seq))))))
      cl-x)))

(defun every (cl-pred cl-seq &rest cl-rest)
  "Return true if PREDICATE is true of every element of SEQ or SEQs."
  (if (or cl-rest (nlistp cl-seq))
      (catch 'cl-every
	(apply 'map nil
	       (function (lambda (&rest cl-x)
			   (or (apply cl-pred cl-x) (throw 'cl-every nil))))
	       cl-seq cl-rest) t)
    (while (and cl-seq (funcall cl-pred (car cl-seq)))
      (setq cl-seq (cdr cl-seq)))
    (null cl-seq)))

(defun notany (cl-pred cl-seq &rest cl-rest)
  "Return true if PREDICATE is false of every element of SEQ or SEQs."
  (not (apply 'some cl-pred cl-seq cl-rest)))

(defun notevery (cl-pred cl-seq &rest cl-rest)
  "Return true if PREDICATE is false of some element of SEQ or SEQs."
  (not (apply 'every cl-pred cl-seq cl-rest)))

;;; Support for `loop'.
(defun cl-map-keymap (cl-func cl-map)
  (while (symbolp cl-map) (setq cl-map (symbol-function cl-map)))
  (if (eq cl-emacs-type 'lucid) (funcall 'map-keymap cl-func cl-map)
    (if (listp cl-map)
	(let ((cl-p cl-map))
	  (while (consp (setq cl-p (cdr cl-p)))
	    (cond ((consp (car cl-p))
		   (funcall cl-func (car (car cl-p)) (cdr (car cl-p))))
		  ((vectorp (car cl-p))
		   (cl-map-keymap cl-func (car cl-p)))
		  ((eq (car cl-p) 'keymap)
		   (setq cl-p nil)))))
      (let ((cl-i -1))
	(while (< (setq cl-i (1+ cl-i)) (length cl-map))
	  (if (aref cl-map cl-i)
	      (funcall cl-func cl-i (aref cl-map cl-i))))))))

(defun cl-map-keymap-recursively (cl-func-rec cl-map &optional cl-base)
  (or cl-base
      (setq cl-base (copy-sequence (if (eq cl-emacs-type 18) "0" [0]))))
  (cl-map-keymap
   (function
    (lambda (cl-key cl-bind)
      (aset cl-base (1- (length cl-base)) cl-key)
      (if (keymapp cl-bind)
	  (cl-map-keymap-recursively
	   cl-func-rec cl-bind
	   (funcall (if (eq cl-emacs-type 18) 'concat 'vconcat)
		    cl-base (list 0)))
	(funcall cl-func-rec cl-base cl-bind))))
   cl-map))

(defun cl-map-intervals (cl-func &optional cl-what cl-prop cl-start cl-end)
  (or cl-what (setq cl-what (current-buffer)))
  (if (bufferp cl-what)
      (let (cl-mark cl-mark2 (cl-next t) cl-next2)
	(save-excursion
	  (set-buffer cl-what)
	  (setq cl-mark (copy-marker (or cl-start (point-min))))
	  (setq cl-mark2 (and cl-end (copy-marker cl-end))))
	(while (and cl-next (or (not cl-mark2) (< cl-mark cl-mark2)))
	  (setq cl-next (and (fboundp 'next-property-change)
			     (if cl-prop (next-single-property-change
					  cl-mark cl-prop cl-what)
			       (next-property-change cl-mark cl-what)))
		cl-next2 (or cl-next (save-excursion
				       (set-buffer cl-what) (point-max))))
	  (funcall cl-func (prog1 (marker-position cl-mark)
			     (set-marker cl-mark cl-next2))
		   (if cl-mark2 (min cl-next2 cl-mark2) cl-next2)))
	(set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil)))
    (or cl-start (setq cl-start 0))
    (or cl-end (setq cl-end (length cl-what)))
    (while (< cl-start cl-end)
      (let ((cl-next (or (and (fboundp 'next-property-change)
			      (if cl-prop (next-single-property-change
					   cl-start cl-prop cl-what)
				(next-property-change cl-start cl-what)))
			 cl-end)))
	(funcall cl-func cl-start (min cl-next cl-end))
	(setq cl-start cl-next)))))

(defun cl-map-overlays (cl-func &optional cl-buffer cl-start cl-end cl-arg)
  (or cl-buffer (setq cl-buffer (current-buffer)))
  (if (fboundp 'overlay-lists)

      ;; This is the preferred algorithm, though overlay-lists is undocumented.
      (let (cl-ovl)
	(save-excursion
	  (set-buffer cl-buffer)
	  (setq cl-ovl (overlay-lists))
	  (if cl-start (setq cl-start (copy-marker cl-start)))
	  (if cl-end (setq cl-end (copy-marker cl-end))))
	(setq cl-ovl (nconc (car cl-ovl) (cdr cl-ovl)))
	(while (and cl-ovl
		    (or (not (overlay-start (car cl-ovl)))
			(and cl-end (>= (overlay-start (car cl-ovl)) cl-end))
			(and cl-start (<= (overlay-end (car cl-ovl)) cl-start))
			(not (funcall cl-func (car cl-ovl) cl-arg))))
	  (setq cl-ovl (cdr cl-ovl)))
	(if cl-start (set-marker cl-start nil))
	(if cl-end (set-marker cl-end nil)))

    ;; This alternate algorithm fails to find zero-length overlays.
    (let ((cl-mark (save-excursion (set-buffer cl-buffer)
				   (copy-marker (or cl-start (point-min)))))
	  (cl-mark2 (and cl-end (save-excursion (set-buffer cl-buffer)
						(copy-marker cl-end))))
	  cl-pos cl-ovl)
      (while (save-excursion
	       (and (setq cl-pos (marker-position cl-mark))
		    (< cl-pos (or cl-mark2 (point-max)))
		    (progn
		      (set-buffer cl-buffer)
		      (setq cl-ovl (overlays-at cl-pos))
		      (set-marker cl-mark (next-overlay-change cl-pos)))))
	(while (and cl-ovl
		    (or (/= (overlay-start (car cl-ovl)) cl-pos)
			(not (and (funcall cl-func (car cl-ovl) cl-arg)
				  (set-marker cl-mark nil)))))
	  (setq cl-ovl (cdr cl-ovl))))
      (set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil)))))

;;; Support for `setf'.
(defun cl-set-frame-visible-p (frame val)
  (cond ((null val) (make-frame-invisible frame))
	((eq val 'icon) (iconify-frame frame))
	(t (make-frame-visible frame)))
  val)

;;; Support for `progv'.
(defvar cl-progv-save)
(defun cl-progv-before (syms values)
  (while syms
    (cl-push (if (boundp (car syms))
		 (cons (car syms) (symbol-value (car syms)))
	       (car syms)) cl-progv-save)
    (if values
	(set (cl-pop syms) (cl-pop values))
      (makunbound (cl-pop syms)))))

(defun cl-progv-after ()
  (while cl-progv-save
    (if (consp (car cl-progv-save))
	(set (car (car cl-progv-save)) (cdr (car cl-progv-save)))
      (makunbound (car cl-progv-save)))
    (cl-pop cl-progv-save)))


;;; Numbers.

(defun gcd (&rest args)
  "Return the greatest common divisor of the arguments."
  (let ((a (abs (or (cl-pop args) 0))))
    (while args
      (let ((b (abs (cl-pop args))))
	(while (> b 0) (setq b (% a (setq a b))))))
    a))

(defun lcm (&rest args)
  "Return the least common multiple of the arguments."
  (if (memq 0 args)
      0
    (let ((a (abs (or (cl-pop args) 1))))
      (while args
	(let ((b (abs (cl-pop args))))
	  (setq a (* (/ a (gcd a b)) b))))
      a)))

(defun isqrt (a)
  "Return the integer square root of the argument."
  (if (and (integerp a) (> a 0))
      (let ((g (cond ((>= a 1000000) 10000) ((>= a 10000) 1000)
		     ((>= a 100) 100) (t 10)))
	    g2)
	(while (< (setq g2 (/ (+ g (/ a g)) 2)) g)
	  (setq g g2))
	g)
    (if (eq a 0) 0 (signal 'arith-error nil))))

(defun cl-expt (x y)
  "Return X raised to the power of Y.  Works only for integer arguments."
  (if (<= y 0) (if (= y 0) 1 (if (memq x '(-1 1)) x 0))
    (* (if (= (% y 2) 0) 1 x) (cl-expt (* x x) (/ y 2)))))
(or (and (fboundp 'expt) (subrp (symbol-function 'expt)))
    (defalias 'expt 'cl-expt))

(defun floor* (x &optional y)
  "Return a list of the floor of X and the fractional part of X.
With two arguments, return floor and remainder of their quotient."
390 391
  (let ((q (floor x y)))
    (list q (- x (if y (* y q) q)))))
Richard M. Stallman's avatar
Richard M. Stallman committed
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919

(defun ceiling* (x &optional y)
  "Return a list of the ceiling of X and the fractional part of X.
With two arguments, return ceiling and remainder of their quotient."
  (let ((res (floor* x y)))
    (if (= (car (cdr res)) 0) res
      (list (1+ (car res)) (- (car (cdr res)) (or y 1))))))

(defun truncate* (x &optional y)
  "Return a list of the integer part of X and the fractional part of X.
With two arguments, return truncation and remainder of their quotient."
  (if (eq (>= x 0) (or (null y) (>= y 0)))
      (floor* x y) (ceiling* x y)))

(defun round* (x &optional y)
  "Return a list of X rounded to the nearest integer and the remainder.
With two arguments, return rounding and remainder of their quotient."
  (if y
      (if (and (integerp x) (integerp y))
	  (let* ((hy (/ y 2))
		 (res (floor* (+ x hy) y)))
	    (if (and (= (car (cdr res)) 0)
		     (= (+ hy hy) y)
		     (/= (% (car res) 2) 0))
		(list (1- (car res)) hy)
	      (list (car res) (- (car (cdr res)) hy))))
	(let ((q (round (/ x y))))
	  (list q (- x (* q y)))))
    (if (integerp x) (list x 0)
      (let ((q (round x)))
	(list q (- x q))))))

(defun mod* (x y)
  "The remainder of X divided by Y, with the same sign as Y."
  (nth 1 (floor* x y)))

(defun rem* (x y)
  "The remainder of X divided by Y, with the same sign as X."
  (nth 1 (truncate* x y)))

(defun signum (a)
  "Return 1 if A is positive, -1 if negative, 0 if zero."
  (cond ((> a 0) 1) ((< a 0) -1) (t 0)))


;; Random numbers.

(defvar *random-state*)
(defun random* (lim &optional state)
  "Return a random nonnegative number less than LIM, an integer or float.
Optional second arg STATE is a random-state object."
  (or state (setq state *random-state*))
  ;; Inspired by "ran3" from Numerical Recipes.  Additive congruential method.
  (let ((vec (aref state 3)))
    (if (integerp vec)
	(let ((i 0) (j (- 1357335 (% (abs vec) 1357333))) (k 1) ii)
	  (aset state 3 (setq vec (make-vector 55 nil)))
	  (aset vec 0 j)
	  (while (> (setq i (% (+ i 21) 55)) 0)
	    (aset vec i (setq j (prog1 k (setq k (- j k))))))
	  (while (< (setq i (1+ i)) 200) (random* 2 state))))
    (let* ((i (aset state 1 (% (1+ (aref state 1)) 55)))
	   (j (aset state 2 (% (1+ (aref state 2)) 55)))
	   (n (logand 8388607 (aset vec i (- (aref vec i) (aref vec j))))))
      (if (integerp lim)
	  (if (<= lim 512) (% n lim)
	    (if (> lim 8388607) (setq n (+ (lsh n 9) (random* 512 state))))
	    (let ((mask 1023))
	      (while (< mask (1- lim)) (setq mask (1+ (+ mask mask))))
	      (if (< (setq n (logand n mask)) lim) n (random* lim state))))
	(* (/ n '8388608e0) lim)))))

(defun make-random-state (&optional state)
  "Return a copy of random-state STATE, or of `*random-state*' if omitted.
If STATE is t, return a new state object seeded from the time of day."
  (cond ((null state) (make-random-state *random-state*))
	((vectorp state) (cl-copy-tree state t))
	((integerp state) (vector 'cl-random-state-tag -1 30 state))
	(t (make-random-state (cl-random-time)))))

(defun random-state-p (object)
  "Return t if OBJECT is a random-state object."
  (and (vectorp object) (= (length object) 4)
       (eq (aref object 0) 'cl-random-state-tag)))


;; Implementation limits.

(defun cl-finite-do (func a b)
  (condition-case err
      (let ((res (funcall func a b)))   ; check for IEEE infinity
	(and (numberp res) (/= res (/ res 2)) res))
    (arith-error nil)))

(defvar most-positive-float)
(defvar most-negative-float)
(defvar least-positive-float)
(defvar least-negative-float)
(defvar least-positive-normalized-float)
(defvar least-negative-normalized-float)
(defvar float-epsilon)
(defvar float-negative-epsilon)

(defun cl-float-limits ()
  (or most-positive-float (not (numberp '2e1))
      (let ((x '2e0) y z)
	;; Find maximum exponent (first two loops are optimizations)
	(while (cl-finite-do '* x x) (setq x (* x x)))
	(while (cl-finite-do '* x (/ x 2)) (setq x (* x (/ x 2))))
	(while (cl-finite-do '+ x x) (setq x (+ x x)))
	(setq z x y (/ x 2))
	;; Now fill in 1's in the mantissa.
	(while (and (cl-finite-do '+ x y) (/= (+ x y) x))
	  (setq x (+ x y) y (/ y 2)))
	(setq most-positive-float x
	      most-negative-float (- x))
	;; Divide down until mantissa starts rounding.
	(setq x (/ x z) y (/ 16 z) x (* x y))
	(while (condition-case err (and (= x (* (/ x 2) 2)) (> (/ y 2) 0))
		 (arith-error nil))
	  (setq x (/ x 2) y (/ y 2)))
	(setq least-positive-normalized-float y
	      least-negative-normalized-float (- y))
	;; Divide down until value underflows to zero.
	(setq x (/ 1 z) y x)
	(while (condition-case err (> (/ x 2) 0) (arith-error nil))
	  (setq x (/ x 2)))
	(setq least-positive-float x
	      least-negative-float (- x))
	(setq x '1e0)
	(while (/= (+ '1e0 x) '1e0) (setq x (/ x 2)))
	(setq float-epsilon (* x 2))
	(setq x '1e0)
	(while (/= (- '1e0 x) '1e0) (setq x (/ x 2)))
	(setq float-negative-epsilon (* x 2))))
  nil)


;;; Sequence functions.

(defun subseq (seq start &optional end)
  "Return the subsequence of SEQ from START to END.
If END is omitted, it defaults to the length of the sequence.
If START or END is negative, it counts from the end."
  (if (stringp seq) (substring seq start end)
    (let (len)
      (and end (< end 0) (setq end (+ end (setq len (length seq)))))
      (if (< start 0) (setq start (+ start (or len (setq len (length seq))))))
      (cond ((listp seq)
	     (if (> start 0) (setq seq (nthcdr start seq)))
	     (if end
		 (let ((res nil))
		   (while (>= (setq end (1- end)) start)
		     (cl-push (cl-pop seq) res))
		   (nreverse res))
	       (copy-sequence seq)))
	    (t
	     (or end (setq end (or len (length seq))))
	     (let ((res (make-vector (max (- end start) 0) nil))
		   (i 0))
	       (while (< start end)
		 (aset res i (aref seq start))
		 (setq i (1+ i) start (1+ start)))
	       res))))))

(defun concatenate (type &rest seqs)
  "Concatenate, into a sequence of type TYPE, the argument SEQUENCES."
  (cond ((eq type 'vector) (apply 'vconcat seqs))
	((eq type 'string) (apply 'concat seqs))
	((eq type 'list) (apply 'append (append seqs '(nil))))
	(t (error "Not a sequence type name: %s" type))))


;;; List functions.

(defun revappend (x y)
  "Equivalent to (append (reverse X) Y)."
  (nconc (reverse x) y))

(defun nreconc (x y)
  "Equivalent to (nconc (nreverse X) Y)."
  (nconc (nreverse x) y))

(defun list-length (x)
  "Return the length of a list.  Return nil if list is circular."
  (let ((n 0) (fast x) (slow x))
    (while (and (cdr fast) (not (and (eq fast slow) (> n 0))))
      (setq n (+ n 2) fast (cdr (cdr fast)) slow (cdr slow)))
    (if fast (if (cdr fast) nil (1+ n)) n)))

(defun tailp (sublist list)
  "Return true if SUBLIST is a tail of LIST."
  (while (and (consp list) (not (eq sublist list)))
    (setq list (cdr list)))
  (if (numberp sublist) (equal sublist list) (eq sublist list)))

(defun cl-copy-tree (tree &optional vecp)
  "Make a copy of TREE.
If TREE is a cons cell, this recursively copies both its car and its cdr.
Constrast to copy-sequence, which copies only along the cdrs.  With second
argument VECP, this copies vectors as well as conses."
  (if (consp tree)
      (let ((p (setq tree (copy-list tree))))
	(while (consp p)
	  (if (or (consp (car p)) (and vecp (vectorp (car p))))
	      (setcar p (cl-copy-tree (car p) vecp)))
	  (or (listp (cdr p)) (setcdr p (cl-copy-tree (cdr p) vecp)))
	  (cl-pop p)))
    (if (and vecp (vectorp tree))
	(let ((i (length (setq tree (copy-sequence tree)))))
	  (while (>= (setq i (1- i)) 0)
	    (aset tree i (cl-copy-tree (aref tree i) vecp))))))
  tree)
(or (and (fboundp 'copy-tree) (subrp (symbol-function 'copy-tree)))
    (defalias 'copy-tree 'cl-copy-tree))


;;; Property lists.

(defun get* (sym tag &optional def)    ; See compiler macro in cl-macs.el
  "Return the value of SYMBOL's PROPNAME property, or DEFAULT if none."
  (or (get sym tag)
      (and def
	   (let ((plist (symbol-plist sym)))
	     (while (and plist (not (eq (car plist) tag)))
	       (setq plist (cdr (cdr plist))))
	     (if plist (car (cdr plist)) def)))))

(defun getf (plist tag &optional def)
  "Search PROPLIST for property PROPNAME; return its value or DEFAULT.
PROPLIST is a list of the sort returned by `symbol-plist'."
  (setplist '--cl-getf-symbol-- plist)
  (or (get '--cl-getf-symbol-- tag)
      (and def (get* '--cl-getf-symbol-- tag def))))

(defun cl-set-getf (plist tag val)
  (let ((p plist))
    (while (and p (not (eq (car p) tag))) (setq p (cdr (cdr p))))
    (if p (progn (setcar (cdr p) val) plist) (list* tag val plist))))

(defun cl-do-remf (plist tag)
  (let ((p (cdr plist)))
    (while (and (cdr p) (not (eq (car (cdr p)) tag))) (setq p (cdr (cdr p))))
    (and (cdr p) (progn (setcdr p (cdr (cdr (cdr p)))) t))))

(defun cl-remprop (sym tag)
  "Remove from SYMBOL's plist the property PROP and its value."
  (let ((plist (symbol-plist sym)))
    (if (and plist (eq tag (car plist)))
	(progn (setplist sym (cdr (cdr plist))) t)
      (cl-do-remf plist tag))))
(or (and (fboundp 'remprop) (subrp (symbol-function 'remprop)))
    (defalias 'remprop 'cl-remprop))



;;; Hash tables.

(defun make-hash-table (&rest cl-keys)
  "Make an empty Common Lisp-style hash-table.
If :test is `eq', this can use Lucid Emacs built-in hash-tables.
In non-Lucid Emacs, or with non-`eq' test, this internally uses a-lists.
Keywords supported:  :test :size
The Common Lisp keywords :rehash-size and :rehash-threshold are ignored."
  (let ((cl-test (or (car (cdr (memq ':test cl-keys))) 'eql))
	(cl-size (or (car (cdr (memq ':size cl-keys))) 20)))
    (if (and (eq cl-test 'eq) (fboundp 'make-hashtable))
	(funcall 'make-hashtable cl-size)
      (list 'cl-hash-table-tag cl-test
	    (if (> cl-size 1) (make-vector cl-size 0)
	      (let ((sym (make-symbol "--hashsym--"))) (set sym nil) sym))
	    0))))

(defvar cl-lucid-hash-tag
  (if (and (fboundp 'make-hashtable) (vectorp (make-hashtable 1)))
      (aref (make-hashtable 1) 0) (make-symbol "--cl-hash-tag--")))

(defun hash-table-p (x)
  "Return t if OBJECT is a hash table."
  (or (eq (car-safe x) 'cl-hash-table-tag)
      (and (vectorp x) (= (length x) 4) (eq (aref x 0) cl-lucid-hash-tag))
      (and (fboundp 'hashtablep) (funcall 'hashtablep x))))

(defun cl-not-hash-table (x &optional y &rest z)
  (signal 'wrong-type-argument (list 'hash-table-p (or y x))))

(defun cl-hash-lookup (key table)
  (or (eq (car-safe table) 'cl-hash-table-tag) (cl-not-hash-table table))
  (let* ((array (nth 2 table)) (test (car (cdr table))) (str key) sym)
    (if (symbolp array) (setq str nil sym (symbol-value array))
      (while (or (consp str) (and (vectorp str) (> (length str) 0)))
	(setq str (elt str 0)))
      (cond ((stringp str) (if (eq test 'equalp) (setq str (downcase str))))
	    ((symbolp str) (setq str (symbol-name str)))
	    ((and (numberp str) (> str -8000000) (< str 8000000))
	     (or (integerp str) (setq str (truncate str)))
	     (setq str (aref ["0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
			      "11" "12" "13" "14" "15"] (logand str 15))))
	    (t (setq str "*")))
      (setq sym (symbol-value (intern-soft str array))))
    (list (and sym (cond ((or (eq test 'eq)
			      (and (eq test 'eql) (not (numberp key))))
			  (assq key sym))
			 ((memq test '(eql equal)) (assoc key sym))
			 (t (assoc* key sym ':test test))))
	  sym str)))

(defvar cl-builtin-gethash
  (if (and (fboundp 'gethash) (subrp (symbol-function 'gethash)))
      (symbol-function 'gethash) 'cl-not-hash-table))
(defvar cl-builtin-remhash
  (if (and (fboundp 'remhash) (subrp (symbol-function 'remhash)))
      (symbol-function 'remhash) 'cl-not-hash-table))
(defvar cl-builtin-clrhash
  (if (and (fboundp 'clrhash) (subrp (symbol-function 'clrhash)))
      (symbol-function 'clrhash) 'cl-not-hash-table))
(defvar cl-builtin-maphash
  (if (and (fboundp 'maphash) (subrp (symbol-function 'maphash)))
      (symbol-function 'maphash) 'cl-not-hash-table))

(defun cl-gethash (key table &optional def)
  "Look up KEY in HASH-TABLE; return corresponding value, or DEFAULT."
  (if (consp table)
      (let ((found (cl-hash-lookup key table)))
	(if (car found) (cdr (car found)) def))
    (funcall cl-builtin-gethash key table def)))
(defalias 'gethash 'cl-gethash)

(defun cl-puthash (key val table)
  (if (consp table)
      (let ((found (cl-hash-lookup key table)))
	(if (car found) (setcdr (car found) val)
	  (if (nth 2 found)
	      (progn
		(if (> (nth 3 table) (* (length (nth 2 table)) 3))
		    (let ((new-table (make-vector (nth 3 table) 0)))
		      (mapatoms (function
				 (lambda (sym)
				   (set (intern (symbol-name sym) new-table)
					(symbol-value sym))))
				(nth 2 table))
		      (setcar (cdr (cdr table)) new-table)))
		(set (intern (nth 2 found) (nth 2 table))
		     (cons (cons key val) (nth 1 found))))
	    (set (nth 2 table) (cons (cons key val) (nth 1 found))))
	  (setcar (cdr (cdr (cdr table))) (1+ (nth 3 table)))))
    (funcall 'puthash key val table)) val)

(defun cl-remhash (key table)
  "Remove KEY from HASH-TABLE."
  (if (consp table)
      (let ((found (cl-hash-lookup key table)))
	(and (car found)
	     (let ((del (delq (car found) (nth 1 found))))
	       (setcar (cdr (cdr (cdr table))) (1- (nth 3 table)))
	       (if (nth 2 found) (set (intern (nth 2 found) (nth 2 table)) del)
		 (set (nth 2 table) del)) t)))
    (prog1 (not (eq (funcall cl-builtin-gethash key table '--cl--) '--cl--))
      (funcall cl-builtin-remhash key table))))
(defalias 'remhash 'cl-remhash)

(defun cl-clrhash (table)
  "Clear HASH-TABLE."
  (if (consp table)
      (progn
	(or (hash-table-p table) (cl-not-hash-table table))
	(if (symbolp (nth 2 table)) (set (nth 2 table) nil)
	  (setcar (cdr (cdr table)) (make-vector (length (nth 2 table)) 0)))
	(setcar (cdr (cdr (cdr table))) 0))
    (funcall cl-builtin-clrhash table))
  nil)
(defalias 'clrhash 'cl-clrhash)

(defun cl-maphash (cl-func cl-table)
  "Call FUNCTION on keys and values from HASH-TABLE."
  (or (hash-table-p cl-table) (cl-not-hash-table cl-table))
  (if (consp cl-table)
      (mapatoms (function (lambda (cl-x)
			    (setq cl-x (symbol-value cl-x))
			    (while cl-x
			      (funcall cl-func (car (car cl-x))
				       (cdr (car cl-x)))
			      (setq cl-x (cdr cl-x)))))
		(if (symbolp (nth 2 cl-table))
		    (vector (nth 2 cl-table)) (nth 2 cl-table)))
    (funcall cl-builtin-maphash cl-func cl-table)))
(defalias 'maphash 'cl-maphash)

(defun hash-table-count (table)
  "Return the number of entries in HASH-TABLE."
  (or (hash-table-p table) (cl-not-hash-table table))
  (if (consp table) (nth 3 table) (funcall 'hashtable-fullness table)))


;;; Some debugging aids.

(defun cl-prettyprint (form)
  "Insert a pretty-printed rendition of a Lisp FORM in current buffer."
  (let ((pt (point)) last)
    (insert "\n" (prin1-to-string form) "\n")
    (setq last (point))
    (goto-char (1+ pt))
    (while (search-forward "(quote " last t)
      (delete-backward-char 7)
      (insert "'")
      (forward-sexp)
      (delete-char 1))
    (goto-char (1+ pt))
    (cl-do-prettyprint)))

(defun cl-do-prettyprint ()
  (skip-chars-forward " ")
  (if (looking-at "(")
      (let ((skip (or (looking-at "((") (looking-at "(prog")
		      (looking-at "(unwind-protect ")
		      (looking-at "(function (")
		      (looking-at "(cl-block-wrapper ")))
	    (two (or (looking-at "(defun ") (looking-at "(defmacro ")))
	    (let (or (looking-at "(let\\*? ") (looking-at "(while ")))
	    (set (looking-at "(p?set[qf] ")))
	(if (or skip let
		(progn
		  (forward-sexp)
		  (and (>= (current-column) 78) (progn (backward-sexp) t))))
	    (let ((nl t))
	      (forward-char 1)
	      (cl-do-prettyprint)
	      (or skip (looking-at ")") (cl-do-prettyprint))
	      (or (not two) (looking-at ")") (cl-do-prettyprint))
	      (while (not (looking-at ")"))
		(if set (setq nl (not nl)))
		(if nl (insert "\n"))
		(lisp-indent-line)
		(cl-do-prettyprint))
	      (forward-char 1))))
    (forward-sexp)))

(defvar cl-macroexpand-cmacs nil)
(defvar cl-closure-vars nil)

(defun cl-macroexpand-all (form &optional env)
  "Expand all macro calls through a Lisp FORM.
This also does some trivial optimizations to make the form prettier."
  (while (or (not (eq form (setq form (macroexpand form env))))
	     (and cl-macroexpand-cmacs
		  (not (eq form (setq form (compiler-macroexpand form)))))))
  (cond ((not (consp form)) form)
	((memq (car form) '(let let*))
	 (if (null (nth 1 form))
	     (cl-macroexpand-all (cons 'progn (cddr form)) env)
	   (let ((letf nil) (res nil) (lets (cadr form)))
	     (while lets
	       (cl-push (if (consp (car lets))
			    (let ((exp (cl-macroexpand-all (caar lets) env)))
			      (or (symbolp exp) (setq letf t))
			      (cons exp (cl-macroexpand-body (cdar lets) env)))
			  (let ((exp (cl-macroexpand-all (car lets) env)))
			    (if (symbolp exp) exp
			      (setq letf t) (list exp nil)))) res)
	       (setq lets (cdr lets)))
	     (list* (if letf (if (eq (car form) 'let) 'letf 'letf*) (car form))
		    (nreverse res) (cl-macroexpand-body (cddr form) env)))))
	((eq (car form) 'cond)
	 (cons (car form)
	       (mapcar (function (lambda (x) (cl-macroexpand-body x env)))
		       (cdr form))))
	((eq (car form) 'condition-case)
	 (list* (car form) (nth 1 form) (cl-macroexpand-all (nth 2 form) env)
		(mapcar (function
			 (lambda (x)
			   (cons (car x) (cl-macroexpand-body (cdr x) env))))
			(cdddr form))))
	((memq (car form) '(quote function))
	 (if (eq (car-safe (nth 1 form)) 'lambda)
	     (let ((body (cl-macroexpand-body (cddadr form) env)))
	       (if (and cl-closure-vars (eq (car form) 'function)
			(cl-expr-contains-any body cl-closure-vars))
		   (let* ((new (mapcar 'gensym cl-closure-vars))
			  (sub (pairlis cl-closure-vars new)) (decls nil))
		     (while (or (stringp (car body))
				(eq (car-safe (car body)) 'interactive))
		       (cl-push (list 'quote (cl-pop body)) decls))
		     (put (car (last cl-closure-vars)) 'used t)
		     (append
		      (list 'list '(quote lambda) '(quote (&rest --cl-rest--)))
		      (sublis sub (nreverse decls))
		      (list
		       (list* 'list '(quote apply)
			      (list 'list '(quote quote)
				    (list 'function
					  (list* 'lambda
						 (append new (cadadr form))
						 (sublis sub body))))
			      (nconc (mapcar (function
					      (lambda (x)
						(list 'list '(quote quote) x)))
					     cl-closure-vars)
				     '((quote --cl-rest--)))))))
		 (list (car form) (list* 'lambda (cadadr form) body))))
	   form))
	((memq (car form) '(defun defmacro))
	 (list* (car form) (nth 1 form) (cl-macroexpand-body (cddr form) env)))
	((and (eq (car form) 'progn) (not (cddr form)))
	 (cl-macroexpand-all (nth 1 form) env))
	((eq (car form) 'setq)
	 (let* ((args (cl-macroexpand-body (cdr form) env)) (p args))
	   (while (and p (symbolp (car p))) (setq p (cddr p)))
	   (if p (cl-macroexpand-all (cons 'setf args)) (cons 'setq args))))
	(t (cons (car form) (cl-macroexpand-body (cdr form) env)))))

(defun cl-macroexpand-body (body &optional env)
  (mapcar (function (lambda (x) (cl-macroexpand-all x env))) body))

(defun cl-prettyexpand (form &optional full)
  (message "Expanding...")
  (let ((cl-macroexpand-cmacs full) (cl-compiling-file full)
	(byte-compile-macro-environment nil))
    (setq form (cl-macroexpand-all form
				   (and (not full) '((block) (eval-when)))))
    (message "Formatting...")
    (prog1 (cl-prettyprint form)
      (message ""))))



(run-hooks 'cl-extra-load-hook)

;;; cl-extra.el ends here