coding.c 253 KB
Newer Older
Karl Heuer's avatar
Karl Heuer committed
1
/* Coding system handler (conversion, detection, and etc).
2
   Copyright (C) 2001, 2002, 2003, 2004, 2005,
Glenn Morris's avatar
Glenn Morris committed
3
                 2006, 2007 Free Software Foundation, Inc.
Kenichi Handa's avatar
Kenichi Handa committed
4
   Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
Glenn Morris's avatar
Glenn Morris committed
5
     2005, 2006, 2007
Kenichi Handa's avatar
Kenichi Handa committed
6 7
     National Institute of Advanced Industrial Science and Technology (AIST)
     Registration Number H14PRO021
Karl Heuer's avatar
Karl Heuer committed
8

Karl Heuer's avatar
Karl Heuer committed
9 10 11 12
This file is part of GNU Emacs.

GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
13
the Free Software Foundation; either version 3, or (at your option)
Karl Heuer's avatar
Karl Heuer committed
14
any later version.
Karl Heuer's avatar
Karl Heuer committed
15

Karl Heuer's avatar
Karl Heuer committed
16 17 18 19
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
Karl Heuer's avatar
Karl Heuer committed
20

Karl Heuer's avatar
Karl Heuer committed
21 22
You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING.  If not, write to
Lute Kamstra's avatar
Lute Kamstra committed
23 24
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */
Karl Heuer's avatar
Karl Heuer committed
25 26 27

/*** TABLE OF CONTENTS ***

28
  0. General comments
Karl Heuer's avatar
Karl Heuer committed
29
  1. Preamble
Kenichi Handa's avatar
Kenichi Handa committed
30
  2. Emacs' internal format (emacs-mule) handlers
Karl Heuer's avatar
Karl Heuer committed
31 32
  3. ISO2022 handlers
  4. Shift-JIS and BIG5 handlers
Kenichi Handa's avatar
Kenichi Handa committed
33 34 35 36 37
  5. CCL handlers
  6. End-of-line handlers
  7. C library functions
  8. Emacs Lisp library functions
  9. Post-amble
Karl Heuer's avatar
Karl Heuer committed
38 39 40

*/

41 42 43
/*** 0. General comments ***/


Dave Love's avatar
Dave Love committed
44
/*** GENERAL NOTE on CODING SYSTEMS ***
Karl Heuer's avatar
Karl Heuer committed
45

Dave Love's avatar
Dave Love committed
46
  A coding system is an encoding mechanism for one or more character
Karl Heuer's avatar
Karl Heuer committed
47 48
  sets.  Here's a list of coding systems which Emacs can handle.  When
  we say "decode", it means converting some other coding system to
Dave Love's avatar
Dave Love committed
49
  Emacs' internal format (emacs-mule), and when we say "encode",
Kenichi Handa's avatar
Kenichi Handa committed
50 51
  it means converting the coding system emacs-mule to some other
  coding system.
Karl Heuer's avatar
Karl Heuer committed
52

Kenichi Handa's avatar
Kenichi Handa committed
53
  0. Emacs' internal format (emacs-mule)
Karl Heuer's avatar
Karl Heuer committed
54

Dave Love's avatar
Dave Love committed
55
  Emacs itself holds a multi-lingual character in buffers and strings
Richard M. Stallman's avatar
Richard M. Stallman committed
56
  in a special format.  Details are described in section 2.
Karl Heuer's avatar
Karl Heuer committed
57 58 59 60

  1. ISO2022

  The most famous coding system for multiple character sets.  X's
Richard M. Stallman's avatar
Richard M. Stallman committed
61 62 63
  Compound Text, various EUCs (Extended Unix Code), and coding
  systems used in Internet communication such as ISO-2022-JP are
  all variants of ISO2022.  Details are described in section 3.
Karl Heuer's avatar
Karl Heuer committed
64 65

  2. SJIS (or Shift-JIS or MS-Kanji-Code)
66

Karl Heuer's avatar
Karl Heuer committed
67 68
  A coding system to encode character sets: ASCII, JISX0201, and
  JISX0208.  Widely used for PC's in Japan.  Details are described in
Richard M. Stallman's avatar
Richard M. Stallman committed
69
  section 4.
Karl Heuer's avatar
Karl Heuer committed
70 71 72

  3. BIG5

Dave Love's avatar
Dave Love committed
73 74
  A coding system to encode the character sets ASCII and Big5.  Widely
  used for Chinese (mainly in Taiwan and Hong Kong).  Details are
Richard M. Stallman's avatar
Richard M. Stallman committed
75 76 77
  described in section 4.  In this file, when we write "BIG5"
  (all uppercase), we mean the coding system, and when we write
  "Big5" (capitalized), we mean the character set.
Karl Heuer's avatar
Karl Heuer committed
78

79 80
  4. Raw text

Dave Love's avatar
Dave Love committed
81 82
  A coding system for text containing random 8-bit code.  Emacs does
  no code conversion on such text except for end-of-line format.
83 84

  5. Other
Karl Heuer's avatar
Karl Heuer committed
85

Dave Love's avatar
Dave Love committed
86 87
  If a user wants to read/write text encoded in a coding system not
  listed above, he can supply a decoder and an encoder for it as CCL
Karl Heuer's avatar
Karl Heuer committed
88 89 90
  (Code Conversion Language) programs.  Emacs executes the CCL program
  while reading/writing.

91 92
  Emacs represents a coding system by a Lisp symbol that has a property
  `coding-system'.  But, before actually using the coding system, the
Karl Heuer's avatar
Karl Heuer committed
93
  information about it is set in a structure of type `struct
Richard M. Stallman's avatar
Richard M. Stallman committed
94
  coding_system' for rapid processing.  See section 6 for more details.
Karl Heuer's avatar
Karl Heuer committed
95 96 97 98 99

*/

/*** GENERAL NOTES on END-OF-LINE FORMAT ***

Dave Love's avatar
Dave Love committed
100 101
  How end-of-line of text is encoded depends on the operating system.
  For instance, Unix's format is just one byte of `line-feed' code,
Richard M. Stallman's avatar
Richard M. Stallman committed
102
  whereas DOS's format is two-byte sequence of `carriage-return' and
103 104
  `line-feed' codes.  MacOS's format is usually one byte of
  `carriage-return'.
Karl Heuer's avatar
Karl Heuer committed
105

Dave Love's avatar
Dave Love committed
106 107 108 109
  Since text character encoding and end-of-line encoding are
  independent, any coding system described above can have any
  end-of-line format.  So Emacs has information about end-of-line
  format in each coding-system.  See section 6 for more details.
Karl Heuer's avatar
Karl Heuer committed
110 111 112 113 114 115 116

*/

/*** GENERAL NOTES on `detect_coding_XXX ()' functions ***

  These functions check if a text between SRC and SRC_END is encoded
  in the coding system category XXX.  Each returns an integer value in
Dave Love's avatar
Dave Love committed
117
  which appropriate flag bits for the category XXX are set.  The flag
Karl Heuer's avatar
Karl Heuer committed
118
  bits are defined in macros CODING_CATEGORY_MASK_XXX.  Below is the
Dave Love's avatar
Dave Love committed
119
  template for these functions.  If MULTIBYTEP is nonzero, 8-bit codes
120
  of the range 0x80..0x9F are in multibyte form.  */
Karl Heuer's avatar
Karl Heuer committed
121 122
#if 0
int
123
detect_coding_emacs_mule (src, src_end, multibytep)
Karl Heuer's avatar
Karl Heuer committed
124
     unsigned char *src, *src_end;
125
     int multibytep;
Karl Heuer's avatar
Karl Heuer committed
126 127 128 129 130 131 132
{
  ...
}
#endif

/*** GENERAL NOTES on `decode_coding_XXX ()' functions ***

133 134 135 136
  These functions decode SRC_BYTES length of unibyte text at SOURCE
  encoded in CODING to Emacs' internal format.  The resulting
  multibyte text goes to a place pointed to by DESTINATION, the length
  of which should not exceed DST_BYTES.
137

Dave Love's avatar
Dave Love committed
138 139 140 141 142
  These functions set the information about original and decoded texts
  in the members `produced', `produced_char', `consumed', and
  `consumed_char' of the structure *CODING.  They also set the member
  `result' to one of CODING_FINISH_XXX indicating how the decoding
  finished.
143

Dave Love's avatar
Dave Love committed
144
  DST_BYTES zero means that the source area and destination area are
145
  overlapped, which means that we can produce a decoded text until it
Dave Love's avatar
Dave Love committed
146
  reaches the head of the not-yet-decoded source text.
147

Dave Love's avatar
Dave Love committed
148
  Below is a template for these functions.  */
Karl Heuer's avatar
Karl Heuer committed
149
#if 0
150
static void
151
decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
Karl Heuer's avatar
Karl Heuer committed
152
     struct coding_system *coding;
153 154
     const unsigned char *source;
     unsigned char *destination;
Karl Heuer's avatar
Karl Heuer committed
155 156 157 158 159 160 161 162
     int src_bytes, dst_bytes;
{
  ...
}
#endif

/*** GENERAL NOTES on `encode_coding_XXX ()' functions ***

Dave Love's avatar
Dave Love committed
163
  These functions encode SRC_BYTES length text at SOURCE from Emacs'
164 165 166
  internal multibyte format to CODING.  The resulting unibyte text
  goes to a place pointed to by DESTINATION, the length of which
  should not exceed DST_BYTES.
167

Dave Love's avatar
Dave Love committed
168 169 170 171 172
  These functions set the information about original and encoded texts
  in the members `produced', `produced_char', `consumed', and
  `consumed_char' of the structure *CODING.  They also set the member
  `result' to one of CODING_FINISH_XXX indicating how the encoding
  finished.
173

Dave Love's avatar
Dave Love committed
174 175 176
  DST_BYTES zero means that the source area and destination area are
  overlapped, which means that we can produce encoded text until it
  reaches at the head of the not-yet-encoded source text.
177

Dave Love's avatar
Dave Love committed
178
  Below is a template for these functions.  */
Karl Heuer's avatar
Karl Heuer committed
179
#if 0
180
static void
181
encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
Karl Heuer's avatar
Karl Heuer committed
182 183 184 185 186 187 188 189 190 191
     struct coding_system *coding;
     unsigned char *source, *destination;
     int src_bytes, dst_bytes;
{
  ...
}
#endif

/*** COMMONLY USED MACROS ***/

192 193 194 195 196 197 198
/* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
   get one, two, and three bytes from the source text respectively.
   If there are not enough bytes in the source, they jump to
   `label_end_of_loop'.  The caller should set variables `coding',
   `src' and `src_end' to appropriate pointer in advance.  These
   macros are called from decoding routines `decode_coding_XXX', thus
   it is assumed that the source text is unibyte.  */
Karl Heuer's avatar
Karl Heuer committed
199

200 201 202 203 204 205 206 207
#define ONE_MORE_BYTE(c1)					\
  do {								\
    if (src >= src_end)						\
      {								\
	coding->result = CODING_FINISH_INSUFFICIENT_SRC;	\
	goto label_end_of_loop;					\
      }								\
    c1 = *src++;						\
Karl Heuer's avatar
Karl Heuer committed
208 209
  } while (0)

210 211 212 213 214 215 216 217 218
#define TWO_MORE_BYTES(c1, c2)					\
  do {								\
    if (src + 1 >= src_end)					\
      {								\
	coding->result = CODING_FINISH_INSUFFICIENT_SRC;	\
	goto label_end_of_loop;					\
      }								\
    c1 = *src++;						\
    c2 = *src++;						\
Karl Heuer's avatar
Karl Heuer committed
219 220 221
  } while (0)


222
/* Like ONE_MORE_BYTE, but 8-bit bytes of data at SRC are in multibyte
223 224
   form if MULTIBYTEP is nonzero.  In addition, if SRC is not less
   than SRC_END, return with RET.  */
225

226
#define ONE_MORE_BYTE_CHECK_MULTIBYTE(c1, multibytep, ret)	\
227 228 229 230
  do {								\
    if (src >= src_end)						\
      {								\
	coding->result = CODING_FINISH_INSUFFICIENT_SRC;	\
231
	return ret;						\
232 233 234 235 236 237
      }								\
    c1 = *src++;						\
    if (multibytep && c1 == LEADING_CODE_8_BIT_CONTROL)		\
      c1 = *src++ - 0x20;					\
  } while (0)

238 239 240 241 242 243 244 245 246
/* Set C to the next character at the source text pointed by `src'.
   If there are not enough characters in the source, jump to
   `label_end_of_loop'.  The caller should set variables `coding'
   `src', `src_end', and `translation_table' to appropriate pointers
   in advance.  This macro is used in encoding routines
   `encode_coding_XXX', thus it assumes that the source text is in
   multibyte form except for 8-bit characters.  8-bit characters are
   in multibyte form if coding->src_multibyte is nonzero, else they
   are represented by a single byte.  */
Karl Heuer's avatar
Karl Heuer committed
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
#define ONE_MORE_CHAR(c)					\
  do {								\
    int len = src_end - src;					\
    int bytes;							\
    if (len <= 0)						\
      {								\
	coding->result = CODING_FINISH_INSUFFICIENT_SRC;	\
	goto label_end_of_loop;					\
      }								\
    if (coding->src_multibyte					\
	|| UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes))	\
      c = STRING_CHAR_AND_LENGTH (src, len, bytes);		\
    else							\
      c = *src, bytes = 1;					\
    if (!NILP (translation_table))				\
263
      c = translate_char (translation_table, c, -1, 0, 0);	\
264
    src += bytes;						\
Karl Heuer's avatar
Karl Heuer committed
265 266 267
  } while (0)


Dave Love's avatar
Dave Love committed
268
/* Produce a multibyte form of character C to `dst'.  Jump to
269 270
   `label_end_of_loop' if there's not enough space at `dst'.

Dave Love's avatar
Dave Love committed
271
   If we are now in the middle of a composition sequence, the decoded
272 273 274 275 276 277 278
   character may be ALTCHAR (for the current composition).  In that
   case, the character goes to coding->cmp_data->data instead of
   `dst'.

   This macro is used in decoding routines.  */

#define EMIT_CHAR(c)							\
Karl Heuer's avatar
Karl Heuer committed
279
  do {									\
280 281 282 283 284 285 286 287 288 289 290 291 292
    if (! COMPOSING_P (coding)						\
	|| coding->composing == COMPOSITION_RELATIVE			\
	|| coding->composing == COMPOSITION_WITH_RULE)			\
      {									\
	int bytes = CHAR_BYTES (c);					\
	if ((dst + bytes) > (dst_bytes ? dst_end : src))		\
	  {								\
	    coding->result = CODING_FINISH_INSUFFICIENT_DST;		\
	    goto label_end_of_loop;					\
	  }								\
	dst += CHAR_STRING (c, dst);					\
	coding->produced_char++;					\
      }									\
Kenichi Handa's avatar
Kenichi Handa committed
293
    									\
294 295 296 297 298 299 300
    if (COMPOSING_P (coding)						\
	&& coding->composing != COMPOSITION_RELATIVE)			\
      {									\
	CODING_ADD_COMPOSITION_COMPONENT (coding, c);			\
	coding->composition_rule_follows				\
	  = coding->composing != COMPOSITION_WITH_ALTCHARS;		\
      }									\
Karl Heuer's avatar
Karl Heuer committed
301 302 303
  } while (0)


304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
#define EMIT_ONE_BYTE(c)					\
  do {								\
    if (dst >= (dst_bytes ? dst_end : src))			\
      {								\
	coding->result = CODING_FINISH_INSUFFICIENT_DST;	\
	goto label_end_of_loop;					\
      }								\
    *dst++ = c;							\
  } while (0)

#define EMIT_TWO_BYTES(c1, c2)					\
  do {								\
    if (dst + 2 > (dst_bytes ? dst_end : src))			\
      {								\
	coding->result = CODING_FINISH_INSUFFICIENT_DST;	\
	goto label_end_of_loop;					\
      }								\
    *dst++ = c1, *dst++ = c2;					\
  } while (0)

#define EMIT_BYTES(from, to)					\
  do {								\
    if (dst + (to - from) > (dst_bytes ? dst_end : src))	\
      {								\
	coding->result = CODING_FINISH_INSUFFICIENT_DST;	\
	goto label_end_of_loop;					\
      }								\
    while (from < to)						\
      *dst++ = *from++;						\
Karl Heuer's avatar
Karl Heuer committed
333 334 335 336 337
  } while (0)


/*** 1. Preamble ***/

338 339 340 341
#ifdef emacs
#include <config.h>
#endif

Karl Heuer's avatar
Karl Heuer committed
342 343 344 345 346 347 348
#include <stdio.h>

#ifdef emacs

#include "lisp.h"
#include "buffer.h"
#include "charset.h"
Kenichi Handa's avatar
Kenichi Handa committed
349
#include "composite.h"
Karl Heuer's avatar
Karl Heuer committed
350 351 352
#include "ccl.h"
#include "coding.h"
#include "window.h"
353
#include "intervals.h"
354 355
#include "frame.h"
#include "termhooks.h"
Karl Heuer's avatar
Karl Heuer committed
356 357 358 359 360 361 362 363 364 365

#else  /* not emacs */

#include "mulelib.h"

#endif /* not emacs */

Lisp_Object Qcoding_system, Qeol_type;
Lisp_Object Qbuffer_file_coding_system;
Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
366
Lisp_Object Qno_conversion, Qundecided;
367
Lisp_Object Qcoding_system_history;
368
Lisp_Object Qsafe_chars;
Kenichi Handa's avatar
Kenichi Handa committed
369
Lisp_Object Qvalid_codes;
370
Lisp_Object Qascii_incompatible;
Karl Heuer's avatar
Karl Heuer committed
371 372

extern Lisp_Object Qinsert_file_contents, Qwrite_region;
Kim F. Storm's avatar
Kim F. Storm committed
373
Lisp_Object Qcall_process, Qcall_process_region;
Karl Heuer's avatar
Karl Heuer committed
374 375 376
Lisp_Object Qstart_process, Qopen_network_stream;
Lisp_Object Qtarget_idx;

377 378 379 380
/* If a symbol has this property, evaluate the value to define the
   symbol as a coding system.  */
Lisp_Object Qcoding_system_define_form;

381 382
Lisp_Object Vselect_safe_coding_system_function;

383 384
int coding_system_require_warning;

385 386 387
/* Mnemonic string for each format of end-of-line.  */
Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
/* Mnemonic string to indicate format of end-of-line is not yet
Karl Heuer's avatar
Karl Heuer committed
388
   decided.  */
389
Lisp_Object eol_mnemonic_undecided;
Karl Heuer's avatar
Karl Heuer committed
390

391
/* Format of end-of-line decided by system.  This is CODING_EOL_LF on
392 393 394
   Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac.
   This has an effect only for external encoding (i.e. for output to
   file and process), not for in-buffer or Lisp string encoding.  */
395 396
int system_eol_type;

Karl Heuer's avatar
Karl Heuer committed
397 398
#ifdef emacs

399 400 401 402 403 404 405 406 407 408
/* Information about which coding system is safe for which chars.
   The value has the form (GENERIC-LIST . NON-GENERIC-ALIST).

   GENERIC-LIST is a list of generic coding systems which can encode
   any characters.

   NON-GENERIC-ALIST is an alist of non generic coding systems vs the
   corresponding char table that contains safe chars.  */
Lisp_Object Vcoding_system_safe_chars;

409 410 411
Lisp_Object Vcoding_system_list, Vcoding_system_alist;

Lisp_Object Qcoding_system_p, Qcoding_system_error;
Karl Heuer's avatar
Karl Heuer committed
412

413 414 415
/* Coding system emacs-mule and raw-text are for converting only
   end-of-line format.  */
Lisp_Object Qemacs_mule, Qraw_text;
416

Dave Love's avatar
Dave Love committed
417 418
Lisp_Object Qutf_8;

Karl Heuer's avatar
Karl Heuer committed
419 420 421 422 423 424 425 426 427
/* Coding-systems are handed between Emacs Lisp programs and C internal
   routines by the following three variables.  */
/* Coding-system for reading files and receiving data from process.  */
Lisp_Object Vcoding_system_for_read;
/* Coding-system for writing files and sending data to process.  */
Lisp_Object Vcoding_system_for_write;
/* Coding-system actually used in the latest I/O.  */
Lisp_Object Vlast_coding_system_used;

428
/* A vector of length 256 which contains information about special
Karl Heuer's avatar
Karl Heuer committed
429
   Latin codes (especially for dealing with Microsoft codes).  */
430
Lisp_Object Vlatin_extra_code_table;
431

432 433 434
/* Flag to inhibit code conversion of end-of-line format.  */
int inhibit_eol_conversion;

435 436 437
/* Flag to inhibit ISO2022 escape sequence detection.  */
int inhibit_iso_escape_detection;

438 439 440
/* Flag to make buffer-file-coding-system inherit from process-coding.  */
int inherit_process_coding_system;

441 442 443 444
/* Coding system to be used to encode text for terminal display when
   terminal coding system is nil.  */
struct coding_system safe_terminal_coding;

445 446 447
/* Default coding system to be used to write a file.  */
struct coding_system default_buffer_file_coding;

448 449 450
Lisp_Object Vfile_coding_system_alist;
Lisp_Object Vprocess_coding_system_alist;
Lisp_Object Vnetwork_coding_system_alist;
Karl Heuer's avatar
Karl Heuer committed
451

452 453
Lisp_Object Vlocale_coding_system;

Karl Heuer's avatar
Karl Heuer committed
454 455
#endif /* emacs */

456
Lisp_Object Qcoding_category, Qcoding_category_index;
Karl Heuer's avatar
Karl Heuer committed
457 458 459 460

/* List of symbols `coding-category-xxx' ordered by priority.  */
Lisp_Object Vcoding_category_list;

461 462
/* Table of coding categories (Lisp symbols).  */
Lisp_Object Vcoding_category_table;
Karl Heuer's avatar
Karl Heuer committed
463 464 465

/* Table of names of symbol for each coding-category.  */
char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
Kenichi Handa's avatar
Kenichi Handa committed
466
  "coding-category-emacs-mule",
Karl Heuer's avatar
Karl Heuer committed
467 468
  "coding-category-sjis",
  "coding-category-iso-7",
469
  "coding-category-iso-7-tight",
Karl Heuer's avatar
Karl Heuer committed
470 471
  "coding-category-iso-8-1",
  "coding-category-iso-8-2",
472 473
  "coding-category-iso-7-else",
  "coding-category-iso-8-else",
474
  "coding-category-ccl",
Karl Heuer's avatar
Karl Heuer committed
475
  "coding-category-big5",
476 477 478
  "coding-category-utf-8",
  "coding-category-utf-16-be",
  "coding-category-utf-16-le",
479
  "coding-category-raw-text",
480
  "coding-category-binary"
Karl Heuer's avatar
Karl Heuer committed
481 482
};

483
/* Table of pointers to coding systems corresponding to each coding
484 485 486
   categories.  */
struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];

487
/* Table of coding category masks.  Nth element is a mask for a coding
Dave Love's avatar
Dave Love committed
488
   category of which priority is Nth.  */
489 490 491
static
int coding_priorities[CODING_CATEGORY_IDX_MAX];

492 493
/* Flag to tell if we look up translation table on character code
   conversion.  */
494
Lisp_Object Venable_character_translation;
495 496 497 498
/* Standard translation table to look up on decoding (reading).  */
Lisp_Object Vstandard_translation_table_for_decode;
/* Standard translation table to look up on encoding (writing).  */
Lisp_Object Vstandard_translation_table_for_encode;
499

500 501 502 503
Lisp_Object Qtranslation_table;
Lisp_Object Qtranslation_table_id;
Lisp_Object Qtranslation_table_for_decode;
Lisp_Object Qtranslation_table_for_encode;
Karl Heuer's avatar
Karl Heuer committed
504 505 506 507

/* Alist of charsets vs revision number.  */
Lisp_Object Vcharset_revision_alist;

508 509 510
/* Default coding systems used for process I/O.  */
Lisp_Object Vdefault_process_coding_system;

511 512 513
/* Char table for translating Quail and self-inserting input.  */
Lisp_Object Vtranslation_table_for_input;

514 515 516 517 518 519
/* Global flag to tell that we can't call post-read-conversion and
   pre-write-conversion functions.  Usually the value is zero, but it
   is set to 1 temporarily while such functions are running.  This is
   to avoid infinite recursive call.  */
static int inhibit_pre_post_conversion;

520 521
Lisp_Object Qchar_coding_system;

522 523
/* Return `safe-chars' property of CODING_SYSTEM (symbol).  Don't check
   its validity.  */
524 525

Lisp_Object
526 527
coding_safe_chars (coding_system)
     Lisp_Object coding_system;
528 529
{
  Lisp_Object coding_spec, plist, safe_chars;
530

531
  coding_spec = Fget (coding_system, Qcoding_system);
532 533 534 535 536 537 538 539
  plist = XVECTOR (coding_spec)->contents[3];
  safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
  return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
}

#define CODING_SAFE_CHAR_P(safe_chars, c) \
  (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))

Karl Heuer's avatar
Karl Heuer committed
540

Kenichi Handa's avatar
Kenichi Handa committed
541
/*** 2. Emacs internal format (emacs-mule) handlers ***/
Karl Heuer's avatar
Karl Heuer committed
542

543 544 545
/* Emacs' internal format for representation of multiple character
   sets is a kind of multi-byte encoding, i.e. characters are
   represented by variable-length sequences of one-byte codes.
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

   ASCII characters and control characters (e.g. `tab', `newline') are
   represented by one-byte sequences which are their ASCII codes, in
   the range 0x00 through 0x7F.

   8-bit characters of the range 0x80..0x9F are represented by
   two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
   code + 0x20).

   8-bit characters of the range 0xA0..0xFF are represented by
   one-byte sequences which are their 8-bit code.

   The other characters are represented by a sequence of `base
   leading-code', optional `extended leading-code', and one or two
   `position-code's.  The length of the sequence is determined by the
561
   base leading-code.  Leading-code takes the range 0x81 through 0x9D,
562 563 564
   whereas extended leading-code and position-code take the range 0xA0
   through 0xFF.  See `charset.h' for more details about leading-code
   and position-code.
Richard M. Stallman's avatar
Richard M. Stallman committed
565

Karl Heuer's avatar
Karl Heuer committed
566
   --- CODE RANGE of Emacs' internal format ---
567 568 569 570 571
   character set	range
   -------------	-----
   ascii		0x00..0x7F
   eight-bit-control	LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
   eight-bit-graphic	0xA0..0xBF
572
   ELSE			0x81..0x9D + [0xA0..0xFF]+
Karl Heuer's avatar
Karl Heuer committed
573 574
   ---------------------------------------------

575 576 577 578 579 580 581 582
   As this is the internal character representation, the format is
   usually not used externally (i.e. in a file or in a data sent to a
   process).  But, it is possible to have a text externally in this
   format (i.e. by encoding by the coding system `emacs-mule').

   In that case, a sequence of one-byte codes has a slightly different
   form.

Dave Love's avatar
comment  
Dave Love committed
583
   Firstly, all characters in eight-bit-control are represented by
584 585 586 587 588 589 590 591
   one-byte sequences which are their 8-bit code.

   Next, character composition data are represented by the byte
   sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
   where,
	METHOD is 0xF0 plus one of composition method (enum
	composition_method),

Dave Love's avatar
comment  
Dave Love committed
592
	BYTES is 0xA0 plus the byte length of these composition data,
593

Dave Love's avatar
comment  
Dave Love committed
594
	CHARS is 0xA0 plus the number of characters composed by these
595 596
	data,

Dave Love's avatar
Dave Love committed
597
	COMPONENTs are characters of multibyte form or composition
598 599 600 601 602 603 604 605 606 607 608 609 610 611
	rules encoded by two-byte of ASCII codes.

   In addition, for backward compatibility, the following formats are
   also recognized as composition data on decoding.

   0x80 MSEQ ...
   0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ

   Here,
	MSEQ is a multibyte form but in these special format:
	  ASCII: 0xA0 ASCII_CODE+0x80,
	  other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
	RULE is a one byte code of the range 0xA0..0xF0 that
	represents a composition rule.
Karl Heuer's avatar
Karl Heuer committed
612 613 614 615 616 617
  */

enum emacs_code_class_type emacs_code_class[256];

/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
   Check if a text is encoded in Emacs' internal format.  If it is,
618
   return CODING_CATEGORY_MASK_EMACS_MULE, else return 0.  */
Karl Heuer's avatar
Karl Heuer committed
619

620 621
static int
detect_coding_emacs_mule (src, src_end, multibytep)
622
      unsigned char *src, *src_end;
623
      int multibytep;
Karl Heuer's avatar
Karl Heuer committed
624 625 626
{
  unsigned char c;
  int composing = 0;
627 628 629
  /* Dummy for ONE_MORE_BYTE.  */
  struct coding_system dummy_coding;
  struct coding_system *coding = &dummy_coding;
Karl Heuer's avatar
Karl Heuer committed
630

631
  while (1)
Karl Heuer's avatar
Karl Heuer committed
632
    {
633 634
      ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep,
				     CODING_CATEGORY_MASK_EMACS_MULE);
Karl Heuer's avatar
Karl Heuer committed
635 636 637 638
      if (composing)
	{
	  if (c < 0xA0)
	    composing = 0;
639 640
	  else if (c == 0xA0)
	    {
641
	      ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep, 0);
642 643
	      c &= 0x7F;
	    }
Karl Heuer's avatar
Karl Heuer committed
644 645 646 647
	  else
	    c -= 0x20;
	}

648
      if (c < 0x20)
Karl Heuer's avatar
Karl Heuer committed
649 650 651
	{
	  if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
	    return 0;
652 653 654 655 656 657 658 659 660 661
	}
      else if (c >= 0x80 && c < 0xA0)
	{
	  if (c == 0x80)
	    /* Old leading code for a composite character.  */
	    composing = 1;
	  else
	    {
	      unsigned char *src_base = src - 1;
	      int bytes;
Karl Heuer's avatar
Karl Heuer committed
662

663 664 665 666 667 668 669 670
	      if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
					       bytes))
		return 0;
	      src = src_base + bytes;
	    }
	}
    }
}
Karl Heuer's avatar
Karl Heuer committed
671 672


673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
/* Record the starting position START and METHOD of one composition.  */

#define CODING_ADD_COMPOSITION_START(coding, start, method)	\
  do {								\
    struct composition_data *cmp_data = coding->cmp_data;	\
    int *data = cmp_data->data + cmp_data->used;		\
    coding->cmp_data_start = cmp_data->used;			\
    data[0] = -1;						\
    data[1] = cmp_data->char_offset + start;			\
    data[3] = (int) method;					\
    cmp_data->used += 4;					\
  } while (0)

/* Record the ending position END of the current composition.  */

#define CODING_ADD_COMPOSITION_END(coding, end)			\
  do {								\
    struct composition_data *cmp_data = coding->cmp_data;	\
    int *data = cmp_data->data + coding->cmp_data_start;	\
    data[0] = cmp_data->used - coding->cmp_data_start;		\
    data[2] = cmp_data->char_offset + end;			\
  } while (0)

/* Record one COMPONENT (alternate character or composition rule).  */

698 699 700 701 702 703 704 705 706 707
#define CODING_ADD_COMPOSITION_COMPONENT(coding, component)		\
  do {									\
    coding->cmp_data->data[coding->cmp_data->used++] = component;	\
    if (coding->cmp_data->used - coding->cmp_data_start			\
	== COMPOSITION_DATA_MAX_BUNCH_LENGTH)				\
      {									\
	CODING_ADD_COMPOSITION_END (coding, coding->produced_char);	\
	coding->composing = COMPOSITION_NO;				\
      }									\
  } while (0)
708 709 710


/* Get one byte from a data pointed by SRC and increment SRC.  If SRC
Dave Love's avatar
Dave Love committed
711
   is not less than SRC_END, return -1 without incrementing Src.  */
712 713 714 715 716 717 718 719 720 721 722 723

#define SAFE_ONE_MORE_BYTE() (src >= src_end ? -1 : *src++)


/* Decode a character represented as a component of composition
   sequence of Emacs 20 style at SRC.  Set C to that character, store
   its multibyte form sequence at P, and set P to the end of that
   sequence.  If no valid character is found, set C to -1.  */

#define DECODE_EMACS_MULE_COMPOSITION_CHAR(c, p)		\
  do {								\
    int bytes;							\
724
								\
725 726 727 728 729 730 731 732 733 734 735 736
    c = SAFE_ONE_MORE_BYTE ();					\
    if (c < 0)							\
      break;							\
    if (CHAR_HEAD_P (c))					\
      c = -1;							\
    else if (c == 0xA0)						\
      {								\
	c = SAFE_ONE_MORE_BYTE ();				\
	if (c < 0xA0)						\
	  c = -1;						\
	else							\
	  {							\
737
	    c -= 0x80;						\
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	    *p++ = c;						\
	  }							\
      }								\
    else if (BASE_LEADING_CODE_P (c - 0x20))			\
      {								\
	unsigned char *p0 = p;					\
								\
	c -= 0x20;						\
	*p++ = c;						\
	bytes = BYTES_BY_CHAR_HEAD (c);				\
	while (--bytes)						\
	  {							\
	    c = SAFE_ONE_MORE_BYTE ();				\
	    if (c < 0)						\
	      break;						\
	    *p++ = c;						\
	  }							\
755 756 757 758
	if (UNIBYTE_STR_AS_MULTIBYTE_P (p0, p - p0, bytes)	\
	    || (coding->flags /* We are recovering a file.  */	\
		&& p0[0] == LEADING_CODE_8_BIT_CONTROL		\
		&& ! CHAR_HEAD_P (p0[1])))			\
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	  c = STRING_CHAR (p0, bytes);				\
	else							\
	  c = -1;						\
      }								\
    else							\
      c = -1;							\
  } while (0)


/* Decode a composition rule represented as a component of composition
   sequence of Emacs 20 style at SRC.  Set C to the rule.  If not
   valid rule is found, set C to -1.  */

#define DECODE_EMACS_MULE_COMPOSITION_RULE(c)		\
  do {							\
    c = SAFE_ONE_MORE_BYTE ();				\
    c -= 0xA0;						\
    if (c < 0 || c >= 81)				\
      c = -1;						\
    else						\
      {							\
	gref = c / 9, nref = c % 9;			\
	c = COMPOSITION_ENCODE_RULE (gref, nref);	\
      }							\
  } while (0)


/* Decode composition sequence encoded by `emacs-mule' at the source
   pointed by SRC.  SRC_END is the end of source.  Store information
   of the composition in CODING->cmp_data.

   For backward compatibility, decode also a composition sequence of
   Emacs 20 style.  In that case, the composition sequence contains
   characters that should be extracted into a buffer or string.  Store
   those characters at *DESTINATION in multibyte form.

   If we encounter an invalid byte sequence, return 0.
   If we encounter an insufficient source or destination, or
   insufficient space in CODING->cmp_data, return 1.
   Otherwise, return consumed bytes in the source.

*/
static INLINE int
decode_composition_emacs_mule (coding, src, src_end,
			       destination, dst_end, dst_bytes)
     struct coding_system *coding;
805 806
     const unsigned char *src, *src_end;
     unsigned char **destination, *dst_end;
807 808 809 810
     int dst_bytes;
{
  unsigned char *dst = *destination;
  int method, data_len, nchars;
811
  const unsigned char *src_base = src++;
Dave Love's avatar
Dave Love committed
812
  /* Store components of composition.  */
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
  int component[COMPOSITION_DATA_MAX_BUNCH_LENGTH];
  int ncomponent;
  /* Store multibyte form of characters to be composed.  This is for
     Emacs 20 style composition sequence.  */
  unsigned char buf[MAX_COMPOSITION_COMPONENTS * MAX_MULTIBYTE_LENGTH];
  unsigned char *bufp = buf;
  int c, i, gref, nref;

  if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
      >= COMPOSITION_DATA_SIZE)
    {
      coding->result = CODING_FINISH_INSUFFICIENT_CMP;
      return -1;
    }

  ONE_MORE_BYTE (c);
  if (c - 0xF0 >= COMPOSITION_RELATIVE
	   && c - 0xF0 <= COMPOSITION_WITH_RULE_ALTCHARS)
    {
      int with_rule;

      method = c - 0xF0;
      with_rule = (method == COMPOSITION_WITH_RULE
		   || method == COMPOSITION_WITH_RULE_ALTCHARS);
      ONE_MORE_BYTE (c);
      data_len = c - 0xA0;
      if (data_len < 4
	  || src_base + data_len > src_end)
	return 0;
      ONE_MORE_BYTE (c);
      nchars = c - 0xA0;
      if (c < 1)
	return 0;
      for (ncomponent = 0; src < src_base + data_len; ncomponent++)
	{
848 849 850 851
	  /* If it is longer than this, it can't be valid.  */
	  if (ncomponent >= COMPOSITION_DATA_MAX_BUNCH_LENGTH)
	    return 0;

852 853 854 855 856 857 858 859 860 861 862
	  if (ncomponent % 2 && with_rule)
	    {
	      ONE_MORE_BYTE (gref);
	      gref -= 32;
	      ONE_MORE_BYTE (nref);
	      nref -= 32;
	      c = COMPOSITION_ENCODE_RULE (gref, nref);
	    }
	  else
	    {
	      int bytes;
863 864 865 866
	      if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes)
		  || (coding->flags /* We are recovering a file.  */
		      && src[0] == LEADING_CODE_8_BIT_CONTROL
		      && ! CHAR_HEAD_P (src[1])))
867 868 869 870 871 872 873 874
		c = STRING_CHAR (src, bytes);
	      else
		c = *src, bytes = 1;
	      src += bytes;
	    }
	  component[ncomponent] = c;
	}
    }
875
  else if (c >= 0x80)
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
    {
      /* This may be an old Emacs 20 style format.  See the comment at
	 the section 2 of this file.  */
      while (src < src_end && !CHAR_HEAD_P (*src)) src++;
      if (src == src_end
	  && !(coding->mode & CODING_MODE_LAST_BLOCK))
	goto label_end_of_loop;

      src_end = src;
      src = src_base + 1;
      if (c < 0xC0)
	{
	  method = COMPOSITION_RELATIVE;
	  for (ncomponent = 0; ncomponent < MAX_COMPOSITION_COMPONENTS;)
	    {
	      DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
	      if (c < 0)
		break;
	      component[ncomponent++] = c;
	    }
	  if (ncomponent < 2)
	    return 0;
	  nchars = ncomponent;
	}
      else if (c == 0xFF)
	{
	  method = COMPOSITION_WITH_RULE;
	  src++;
	  DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
	  if (c < 0)
	    return 0;
	  component[0] = c;
	  for (ncomponent = 1;
	       ncomponent < MAX_COMPOSITION_COMPONENTS * 2 - 1;)
	    {
	      DECODE_EMACS_MULE_COMPOSITION_RULE (c);
	      if (c < 0)
		break;
	      component[ncomponent++] = c;
	      DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
	      if (c < 0)
		break;
	      component[ncomponent++] = c;
	    }
	  if (ncomponent < 3)
	    return 0;
	  nchars = (ncomponent + 1) / 2;
	}
      else
	return 0;
    }
927 928
  else
    return 0;
929 930 931 932 933 934

  if (buf == bufp || dst + (bufp - buf) <= (dst_bytes ? dst_end : src))
    {
      CODING_ADD_COMPOSITION_START (coding, coding->produced_char, method);
      for (i = 0; i < ncomponent; i++)
	CODING_ADD_COMPOSITION_COMPONENT (coding, component[i]);
935
      CODING_ADD_COMPOSITION_END (coding, coding->produced_char + nchars);
936 937 938 939 940 941 942 943 944 945 946 947 948
      if (buf < bufp)
	{
	  unsigned char *p = buf;
	  EMIT_BYTES (p, bufp);
	  *destination += bufp - buf;
	  coding->produced_char += nchars;
	}
      return (src - src_base);
    }
 label_end_of_loop:
  return -1;
}

949
/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".  */
Karl Heuer's avatar
Karl Heuer committed
950

951 952 953
static void
decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
     struct coding_system *coding;
954 955
     const unsigned char *source;
     unsigned char *destination;
956 957
     int src_bytes, dst_bytes;
{
958 959
  const unsigned char *src = source;
  const unsigned char *src_end = source + src_bytes;
960 961 962 963 964 965
  unsigned char *dst = destination;
  unsigned char *dst_end = destination + dst_bytes;
  /* SRC_BASE remembers the start position in source in each loop.
     The loop will be exited when there's not enough source code, or
     when there's not enough destination area to produce a
     character.  */
966
  const unsigned char *src_base;
Karl Heuer's avatar
Karl Heuer committed
967

968
  coding->produced_char = 0;
969
  while ((src_base = src) < src_end)
970
    {
971 972
      unsigned char tmp[MAX_MULTIBYTE_LENGTH];
      const unsigned char *p;
973
      int bytes;
Kenichi Handa's avatar
Kenichi Handa committed
974

975 976
      if (*src == '\r')
	{
977
	  int c = *src++;
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

	  if (coding->eol_type == CODING_EOL_CR)
	    c = '\n';
	  else if (coding->eol_type == CODING_EOL_CRLF)
	    {
	      ONE_MORE_BYTE (c);
	      if (c != '\n')
		{
		  src--;
		  c = '\r';
		}
	    }
	  *dst++ = c;
	  coding->produced_char++;
	  continue;
	}
      else if (*src == '\n')
	{
	  if ((coding->eol_type == CODING_EOL_CR
	       || coding->eol_type == CODING_EOL_CRLF)
	      && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
	    {
	      coding->result = CODING_FINISH_INCONSISTENT_EOL;
	      goto label_end_of_loop;
	    }
	  *dst++ = *src++;
	  coding->produced_char++;
	  continue;
	}
1007
      else if (*src == 0x80 && coding->cmp_data)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	{
	  /* Start of composition data.  */
	  int consumed  = decode_composition_emacs_mule (coding, src, src_end,
							 &dst, dst_end,
							 dst_bytes);
	  if (consumed < 0)
	    goto label_end_of_loop;
	  else if (consumed > 0)
	    {
	      src += consumed;
	      continue;
	    }
	  bytes = CHAR_STRING (*src, tmp);
	  p = tmp;
	  src++;
	}
1024 1025 1026 1027
      else if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes)
	       || (coding->flags /* We are recovering a file.  */
		   && src[0] == LEADING_CODE_8_BIT_CONTROL
		   && ! CHAR_HEAD_P (src[1])))
1028 1029 1030 1031 1032 1033
	{
	  p = src;
	  src += bytes;
	}
      else
	{
1034 1035 1036
	  int i, c;

	  bytes = BYTES_BY_CHAR_HEAD (*src);
1037
	  src++;
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	  for (i = 1; i < bytes; i++)
	    {
	      ONE_MORE_BYTE (c);
	      if (CHAR_HEAD_P (c))
		break;
	    }
	  if (i < bytes)
	    {
	      bytes = CHAR_STRING (*src_base, tmp);
	      p = tmp;
	      src = src_base + 1;
	    }
	  else
	    {
	      p = src_base;
	    }
1054 1055 1056 1057
	}
      if (dst + bytes >= (dst_bytes ? dst_end : src))
	{
	  coding->result = CODING_FINISH_INSUFFICIENT_DST;
Karl Heuer's avatar
Karl Heuer committed
1058 1059
	  break;
	}
1060 1061
      while (bytes--) *dst++ = *p++;
      coding->produced_char++;
Karl Heuer's avatar
Karl Heuer committed
1062
    }
1063
 label_end_of_loop:
1064 1065
  coding->consumed = coding->consumed_char = src_base - source;
  coding->produced = dst - destination;
Karl Heuer's avatar
Karl Heuer committed
1066 1067
}

1068

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
/* Encode composition data stored at DATA into a special byte sequence
   starting by 0x80.  Update CODING->cmp_data_start and maybe
   CODING->cmp_data for the next call.  */

#define ENCODE_COMPOSITION_EMACS_MULE(coding, data)			\
  do {									\
    unsigned char buf[1024], *p0 = buf, *p;				\
    int len = data[0];							\
    int i;								\
    									\
    buf[0] = 0x80;							\
    buf[1] = 0xF0 + data[3];	/* METHOD */				\
    buf[3] = 0xA0 + (data[2] - data[1]); /* COMPOSED-CHARS */		\
    p = buf + 4;							\
    if (data[3] == COMPOSITION_WITH_RULE				\
	|| data[3] == COMPOSITION_WITH_RULE_ALTCHARS)			\
      {									\
	p += CHAR_STRING (data[4], p);					\
	for (i = 5; i < len; i += 2)					\
	  {								\
	    int gref, nref;						\
	     COMPOSITION_DECODE_RULE (data[i], gref, nref);		\
	    *p++ = 0x20 + gref;						\
	    *p++ = 0x20 + nref;						\
	    p += CHAR_STRING (data[i + 1], p);				\
	  }								\
      }									\
    else								\
      {									\
	for (i = 4; i < len; i++)					\
	  p += CHAR_STRING (data[i], p);				\
      }									\
    buf[2] = 0xA0 + (p - buf);	/* COMPONENTS-BYTES */			\
    									\
    if (dst + (p - buf) + 4 > (dst_bytes ? dst_end : src))		\
      {									\
	coding->result = CODING_FINISH_INSUFFICIENT_DST;		\
	goto label_end_of_loop;						\
      }									\
    while (p0 < p)							\
      *dst++ = *p0++;							\
    coding->cmp_data_start += data[0];					\
    if (coding->cmp_data_start == coding->cmp_data->used		\
	&& coding->cmp_data->next)					\
      {									\
	coding->cmp_data = coding->cmp_data->next;			\
	coding->cmp_data_start = 0;					\
      }									\
  } while (0)
1118

1119

1120
static void encode_eol P_ ((struct coding_system *, const unsigned char *,
1121 1122 1123 1124 1125
			    unsigned char *, int, int));

static void
encode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
     struct coding_system *coding;
1126 1127
     const unsigned char *source;
     unsigned char *destination;
1128 1129
     int src_bytes, dst_bytes;
{
1130 1131
  const unsigned char *src = source;
  const unsigned char *src_end = source + src_bytes;
1132 1133
  unsigned char *dst = destination;
  unsigned char *dst_end = destination + dst_bytes;
1134
  const unsigned char *src_base;
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
  int c;
  int char_offset;
  int *data;

  Lisp_Object translation_table;

  translation_table = Qnil;

  /* Optimization for the case that there's no composition.  */
  if (!coding->cmp_data || coding->cmp_data->used == 0)
    {
      encode_eol (coding, source, destination, src_bytes, dst_bytes);
      return;
    }

  char_offset = coding->cmp_data->char_offset;
  data = coding->cmp_data->data + coding->cmp_data_start;
  while (1)
    {
      src_base = src;

      /* If SRC starts a composition, encode the information about the
	 composition in advance.  */
      if (coding->cmp_data_start < coding->cmp_data->used
	  && char_offset + coding->consumed_char == data[1])
	{
	  ENCODE_COMPOSITION_EMACS_MULE (coding, data);
	  char_offset = coding->cmp_data->char_offset;
	  data = coding->cmp_data->data + coding->cmp_data_start;
	}

      ONE_MORE_CHAR (c);
      if (c == '\n' && (coding->eol_type == CODING_EOL_CRLF
			|| coding->eol_type == CODING_EOL_CR))
	{
	  if (coding->eol_type == CODING_EOL_CRLF)
	    EMIT_TWO_BYTES ('\r', c);
	  else
	    EMIT_ONE_BYTE ('\r');
	}
      else if (SINGLE_BYTE_CHAR_P (c))
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	{
	  if (coding->flags && ! ASCII_BYTE_P (c))
	    {
	      /* As we are auto saving, retain the multibyte form for
		 8-bit chars.  */
	      unsigned char buf[MAX_MULTIBYTE_LENGTH];
	      int bytes = CHAR_STRING (c, buf);

	      if (bytes == 1)
		EMIT_ONE_BYTE (buf[0]);
	      else
		EMIT_TWO_BYTES (buf[0], buf[1]);
	    }
	  else
	    EMIT_ONE_BYTE (c);
	}
1192 1193 1194 1195 1196 1197 1198 1199 1200
      else
	EMIT_BYTES (src_base, src);
      coding->consumed_char++;
    }
 label_end_of_loop:
  coding->consumed = src_base - source;
  coding->produced = coding->produced_char = dst - destination;
  return;
}
1201

Karl Heuer's avatar
Karl Heuer committed
1202 1203 1204 1205

/*** 3. ISO2022 handlers ***/

/* The following note describes the coding system ISO2022 briefly.
1206
   Since the intention of this note is to help understand the
Dave Love's avatar
Dave Love committed
1207
   functions in this file, some parts are NOT ACCURATE or are OVERLY
1208
   SIMPLIFIED.  For thorough understanding, please refer to the
Dave Love's avatar
Dave Love committed
1209 1210
   original document of ISO2022.  This is equivalent to the standard
   ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
Karl Heuer's avatar
Karl Heuer committed
1211 1212

   ISO2022 provides many mechanisms to encode several character sets
Dave Love's avatar
Dave Love committed
1213
   in 7-bit and 8-bit environments.  For 7-bit environments, all text
1214 1215
   is encoded using bytes less than 128.  This may make the encoded
   text a little bit longer, but the text passes more easily through
Dave Love's avatar
Dave Love committed
1216
   several types of gateway, some of which strip off the MSB (Most
Dave Love's avatar
Dave Love committed
1217
   Significant Bit).
1218

Dave Love's avatar
Dave Love committed
1219 1220
   There are two kinds of character sets: control character sets and
   graphic character sets.  The former contain control characters such
Karl Heuer's avatar
Karl Heuer committed
1221
   as `newline' and `escape' to provide control functions (control
1222
   functions are also provided by escape sequences).  The latter
Dave Love's avatar
Dave Love committed
1223
   contain graphic characters such as 'A' and '-'.  Emacs recognizes
Karl Heuer's avatar
Karl Heuer committed
1224 1225 1226
   two control character sets and many graphic character sets.

   Graphic character sets are classified into one of the following
1227 1228 1229 1230 1231 1232 1233 1234
   four classes, according to the number of bytes (DIMENSION) and
   number of characters in one dimension (CHARS) of the set:
   - DIMENSION1_CHARS94
   - DIMENSION1_CHARS96
   - DIMENSION2_CHARS94
   - DIMENSION2_CHARS96

   In addition, each character set is assigned an identification tag,
Dave Love's avatar
Dave Love committed
1235
   unique for each set, called the "final character" (denoted as <F>
1236 1237 1238
   hereafter).  The <F> of each character set is decided by ECMA(*)
   when it is registered in ISO.  The code range of <F> is 0x30..0x7F
   (0x30..0x3F are for private use only).
Karl Heuer's avatar
Karl Heuer committed
1239 1240 1241

   Note (*): ECMA = European Computer Manufacturers Association

Dave Love's avatar
Dave Love committed
1242
   Here are examples of graphic character sets [NAME(<F>)]:
Karl Heuer's avatar
Karl Heuer committed
1243 1244 1245 1246 1247
	o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
	o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
	o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
	o DIMENSION2_CHARS96 -- none for the moment

1248
   A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
Karl Heuer's avatar
Karl Heuer committed
1249 1250 1251 1252 1253 1254
	C0 [0x00..0x1F] -- control character plane 0
	GL [0x20..0x7F] -- graphic character plane 0
	C1 [0x80..0x9F] -- control character plane 1
	GR [0xA0..0xFF] -- graphic character plane 1

   A control character set is directly designated and invoked to C0 or
1255 1256 1257 1258 1259 1260 1261 1262
   C1 by an escape sequence.  The most common case is that:
   - ISO646's  control character set is designated/invoked to C0, and
   - ISO6429's control character set is designated/invoked to C1,
   and usually these designations/invocations are omitted in encoded
   text.  In a 7-bit environment, only C0 can be used, and a control
   character for C1 is encoded by an appropriate escape sequence to
   fit into the environment.  All control characters for C1 are
   defined to have corresponding escape sequences.
Karl Heuer's avatar
Karl Heuer committed
1263 1264 1265 1266 1267

   A graphic character set is at first designated to one of four
   graphic registers (G0 through G3), then these graphic registers are
   invoked to GL or GR.  These designations and invocations can be
   done independently.  The most common case is that G0 is invoked to
1268 1269 1270
   GL, G1 is invoked to GR, and ASCII is designated to G0.  Usually
   these invocations and designations are omitted in encoded text.
   In a 7-bit environment, only GL can be used.
Karl Heuer's avatar
Karl Heuer committed
1271

1272 1273 1274 1275
   When a graphic character set of CHARS94 is invoked to GL, codes
   0x20 and 0x7F of the GL area work as control characters SPACE and
   DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
   be used.
Karl Heuer's avatar
Karl Heuer committed
1276 1277 1278

   There are two ways of invocation: locking-shift and single-shift.
   With locking-shift, the invocation lasts until the next different
1279 1280 1281 1282
   invocation, whereas with single-shift, the invocation affects the
   following character only and doesn't affect the locking-shift
   state.  Invocations are done by the following control characters or
   escape sequences:
Karl Heuer's avatar
Karl Heuer committed
1283 1284

   ----------------------------------------------------------------------
1285
   abbrev  function	             cntrl escape seq	description
Karl Heuer's avatar
Karl Heuer committed
1286
   ----------------------------------------------------------------------
1287 1288 1289 1290 1291 1292 1293 1294 1295
   SI/LS0  (shift-in)		     0x0F  none		invoke G0 into GL
   SO/LS1  (shift-out)		     0x0E  none		invoke G1 into GL
   LS2     (locking-shift-2)	     none  ESC 'n'	invoke G2 into GL
   LS3     (locking-shift-3)	     none  ESC 'o'	invoke G3 into GL
   LS1R    (locking-shift-1 right)   none  ESC '~'      invoke G1 into GR (*)
   LS2R    (locking-shift-2 right)   none  ESC '}'      invoke G2 into GR (*)
   LS3R    (locking-shift 3 right)   none  ESC '|'      invoke G3 into GR (*)
   SS2     (single-shift-2)	     0x8E  ESC 'N'	invoke G2 for one char
   SS3     (single-shift-3)	     0x8F  ESC 'O'	invoke G3 for one char
Karl Heuer's avatar
Karl Heuer committed
1296
   ----------------------------------------------------------------------
1297 1298 1299 1300
   (*) These are not used by any known coding system.

   Control characters for these functions are defined by macros
   ISO_CODE_XXX in `coding.h'.
Karl Heuer's avatar
Karl Heuer committed
1301

1302
   Designations are done by the following escape sequences:
Karl Heuer's avatar
Karl Heuer committed
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
   ----------------------------------------------------------------------
   escape sequence	description
   ----------------------------------------------------------------------
   ESC '(' <F>		designate DIMENSION1_CHARS94<F> to G0
   ESC ')' <F>		designate DIMENSION1_CHARS94<F> to G1
   ESC '*' <F>		designate DIMENSION1_CHARS94<F> to G2
   ESC '+' <F>		designate DIMENSION1_CHARS94<F> to G3
   ESC ',' <F>		designate DIMENSION1_CHARS96<F> to G0 (*)
   ESC '-' <F>		designate DIMENSION1_CHARS96<F> to G1
   ESC '.' <F>		designate DIMENSION1_CHARS96<F> to G2
   ESC '/' <F>		designate DIMENSION1_CHARS96<F> to G3
   ESC '$' '(' <F>	designate DIMENSION2_CHARS94<F> to G0 (**)
   ESC '$' ')' <F>	designate DIMENSION2_CHARS94<F> to G1
   ESC '$' '*' <F>	designate DIMENSION2_CHARS94<F> to G2
   ESC '$' '+' <F>	designate DIMENSION2_CHARS94<F> to G3
   ESC '$' ',' <F>	designate DIMENSION2_CHARS96<F> to G0 (*)
   ESC '$' '-' <F>	designate DIMENSION2_CHARS96<F> to G1
   ESC '$' '.' <F>	designate DIMENSION2_CHARS96<F> to G2
   ESC '$' '/' <F>	designate DIMENSION2_CHARS96<F> to G3
   ----------------------------------------------------------------------

   In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
1325
   of dimension 1, chars 94, and final character <F>, etc...
Karl Heuer's avatar
Karl Heuer committed
1326 1327 1328

   Note (*): Although these designations are not allowed in ISO2022,
   Emacs accepts them on decoding, and produces them on encoding
1329
   CHARS96 character sets in a coding system which is characterized as
Karl Heuer's avatar
Karl Heuer committed
1330 1331 1332
   7-bit environment, non-locking-shift, and non-single-shift.

   Note (**): If <F> is '@', 'A', or 'B', the intermediate character
1333
   '(' can be omitted.  We refer to this as "short-form" hereafter.
Karl Heuer's avatar
Karl Heuer committed
1334

Dave Love's avatar
Dave Love committed
1335
   Now you may notice that there are a lot of ways of encoding the
1336 1337
   same multilingual text in ISO2022.  Actually, there exist many
   coding systems such as Compound Text (used in X11's inter client
Dave Love's avatar
Dave Love committed
1338 1339
   communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
   (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
Karl Heuer's avatar
Karl Heuer committed
1340 1341 1342 1343 1344 1345
   localized platforms), and all of these are variants of ISO2022.

   In addition to the above, Emacs handles two more kinds of escape
   sequences: ISO6429's direction specification and Emacs' private
   sequence for specifying character composition.

1346
   ISO6429's direction specification takes the following form:
Karl Heuer's avatar
Karl Heuer committed
1347 1348 1349 1350 1351
	o CSI ']'      -- end of the current direction
	o CSI '0' ']'  -- end of the current direction
	o CSI '1' ']'  -- start of left-to-right text
	o CSI '2' ']'  -- start of right-to-left text
   The control character CSI (0x9B: control sequence introducer) is
1352 1353 1354
   abbreviated to the escape sequence ESC '[' in a 7-bit environment.

   Character composition specification takes the following form:
Kenichi Handa's avatar
Kenichi Handa committed
1355 1356 1357 1358 1359
	o ESC '0' -- start relative composition
	o ESC '1' -- end composition
	o ESC '2' -- start rule-base composition (*)
	o ESC '3' -- start relative composition with alternate chars  (**)
	o ESC '4' -- start rule-base composition with alternate chars  (**)
1360
  Since these are not standard escape sequences of any ISO standard,
Dave Love's avatar
Dave Love committed
1361
  the use of them with these meanings is restricted to Emacs only.
Kenichi Handa's avatar
Kenichi Handa committed
1362

Dave Love's avatar
Dave Love committed
1363
  (*) This form is used only in Emacs 20.5 and older versions,
1364
  but the newer versions can safely decode it.
Dave Love's avatar
Dave Love committed
1365
  (**) This form is used only in Emacs 21.1 and newer versions,
1366
  and the older versions can't decode it.
Kenichi Handa's avatar
Kenichi Handa committed
1367

Dave Love's avatar
Dave Love committed
1368
  Here's a list of example usages of these composition escape
1369
  sequences (categorized by `enum composition_method').
Kenichi Handa's avatar
Kenichi Handa committed
1370

1371
  COMPOSITION_RELATIVE:
Kenichi Handa's avatar
Kenichi Handa committed
1372
	ESC 0 CHAR [ CHAR ] ESC 1
Dave Love's avatar
Dave Love committed
1373
  COMPOSITION_WITH_RULE:
Kenichi Handa's avatar
Kenichi Handa committed
1374
	ESC 2 CHAR [ RULE CHAR ] ESC 1
1375
  COMPOSITION_WITH_ALTCHARS:
Kenichi Handa's avatar
Kenichi Handa committed