ccl.c 53.3 KB
Newer Older
Karl Heuer's avatar
Karl Heuer committed
1
/* CCL (Code Conversion Language) interpreter.
2 3
   Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
   Licensed to the Free Software Foundation.
Karl Heuer's avatar
Karl Heuer committed
4

Karl Heuer's avatar
Karl Heuer committed
5 6 7 8 9 10
This file is part of GNU Emacs.

GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
Karl Heuer's avatar
Karl Heuer committed
11

Karl Heuer's avatar
Karl Heuer committed
12 13 14 15
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
Karl Heuer's avatar
Karl Heuer committed
16

Karl Heuer's avatar
Karl Heuer committed
17 18 19 20
You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */
Karl Heuer's avatar
Karl Heuer committed
21 22 23 24 25 26

#include <stdio.h>

#ifdef emacs

#include <config.h>
Andreas Schwab's avatar
Andreas Schwab committed
27 28 29 30 31

#ifdef STDC_HEADERS
#include <stdlib.h>
#endif

Karl Heuer's avatar
Karl Heuer committed
32 33 34 35 36 37 38 39 40 41 42
#include "lisp.h"
#include "charset.h"
#include "ccl.h"
#include "coding.h"

#else  /* not emacs */

#include "mulelib.h"

#endif /* not emacs */

Kenichi Handa's avatar
Kenichi Handa committed
43
/* This contains all code conversion map available to CCL.  */
44
Lisp_Object Vcode_conversion_map_vector;
45

Karl Heuer's avatar
Karl Heuer committed
46 47 48
/* Alist of fontname patterns vs corresponding CCL program.  */
Lisp_Object Vfont_ccl_encoder_alist;

Kenichi Handa's avatar
Kenichi Handa committed
49 50
/* This symbol is a property which assocates with ccl program vector.
   Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector.  */
51 52
Lisp_Object Qccl_program;

53 54 55 56
/* These symbols are properties which associate with code conversion
   map and their ID respectively.  */
Lisp_Object Qcode_conversion_map;
Lisp_Object Qcode_conversion_map_id;
57

Kenichi Handa's avatar
Kenichi Handa committed
58 59 60 61
/* Symbols of ccl program have this property, a value of the property
   is an index for Vccl_protram_table. */
Lisp_Object Qccl_program_idx;

Karl Heuer's avatar
Karl Heuer committed
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
/* Vector of CCL program names vs corresponding program data.  */
Lisp_Object Vccl_program_table;

/* CCL (Code Conversion Language) is a simple language which has
   operations on one input buffer, one output buffer, and 7 registers.
   The syntax of CCL is described in `ccl.el'.  Emacs Lisp function
   `ccl-compile' compiles a CCL program and produces a CCL code which
   is a vector of integers.  The structure of this vector is as
   follows: The 1st element: buffer-magnification, a factor for the
   size of output buffer compared with the size of input buffer.  The
   2nd element: address of CCL code to be executed when encountered
   with end of input stream.  The 3rd and the remaining elements: CCL
   codes.  */

/* Header of CCL compiled code */
#define CCL_HEADER_BUF_MAG	0
#define CCL_HEADER_EOF		1
#define CCL_HEADER_MAIN		2

/* CCL code is a sequence of 28-bit non-negative integers (i.e. the
   MSB is always 0), each contains CCL command and/or arguments in the
   following format:

	|----------------- integer (28-bit) ------------------|
	|------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
	|--constant argument--|-register-|-register-|-command-|
	   ccccccccccccccccc      RRR        rrr       XXXXX
  or
	|------- relative address -------|-register-|-command-|
	       cccccccccccccccccccc          rrr       XXXXX
  or
	|------------- constant or other args ----------------|
                     cccccccccccccccccccccccccccc

   where, `cc...c' is a non-negative integer indicating constant value
   (the left most `c' is always 0) or an absolute jump address, `RRR'
   and `rrr' are CCL register number, `XXXXX' is one of the following
   CCL commands.  */

/* CCL commands

   Each comment fields shows one or more lines for command syntax and
   the following lines for semantics of the command.  In semantics, IC
   stands for Instruction Counter.  */

#define CCL_SetRegister		0x00 /* Set register a register value:
					1:00000000000000000RRRrrrXXXXX
					------------------------------
					reg[rrr] = reg[RRR];
					*/

#define CCL_SetShortConst	0x01 /* Set register a short constant value:
					1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
					------------------------------
					reg[rrr] = CCCCCCCCCCCCCCCCCCC;
					*/

#define CCL_SetConst		0x02 /* Set register a constant value:
					1:00000000000000000000rrrXXXXX
					2:CONSTANT
					------------------------------
					reg[rrr] = CONSTANT;
					IC++;
					*/

#define CCL_SetArray		0x03 /* Set register an element of array:
					1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
					2:ELEMENT[0]
					3:ELEMENT[1]
					...
					------------------------------
					if (0 <= reg[RRR] < CC..C)
					  reg[rrr] = ELEMENT[reg[RRR]];
					IC += CC..C;
					*/

#define CCL_Jump		0x04 /* Jump:
					1:A--D--D--R--E--S--S-000XXXXX
					------------------------------
					IC += ADDRESS;
					*/

/* Note: If CC..C is greater than 0, the second code is omitted.  */

#define CCL_JumpCond		0x05 /* Jump conditional:
					1:A--D--D--R--E--S--S-rrrXXXXX
					------------------------------
					if (!reg[rrr])
					  IC += ADDRESS;
					*/


#define CCL_WriteRegisterJump	0x06 /* Write register and jump:
					1:A--D--D--R--E--S--S-rrrXXXXX
					------------------------------
					write (reg[rrr]);
					IC += ADDRESS;
					*/

#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
					1:A--D--D--R--E--S--S-rrrXXXXX
					2:A--D--D--R--E--S--S-rrrYYYYY
					-----------------------------
					write (reg[rrr]);
					IC++;
					read (reg[rrr]);
					IC += ADDRESS;
					*/
/* Note: If read is suspended, the resumed execution starts from the
   second code (YYYYY == CCL_ReadJump).  */

#define CCL_WriteConstJump	0x08 /* Write constant and jump:
					1:A--D--D--R--E--S--S-000XXXXX
					2:CONST
					------------------------------
					write (CONST);
					IC += ADDRESS;
					*/

#define CCL_WriteConstReadJump	0x09 /* Write constant, read, and jump:
					1:A--D--D--R--E--S--S-rrrXXXXX
					2:CONST
					3:A--D--D--R--E--S--S-rrrYYYYY
					-----------------------------
					write (CONST);
					IC += 2;
					read (reg[rrr]);
					IC += ADDRESS;
					*/
/* Note: If read is suspended, the resumed execution starts from the
   second code (YYYYY == CCL_ReadJump).  */

#define CCL_WriteStringJump	0x0A /* Write string and jump:
					1:A--D--D--R--E--S--S-000XXXXX
					2:LENGTH
					3:0000STRIN[0]STRIN[1]STRIN[2]
					...
					------------------------------
					write_string (STRING, LENGTH);
					IC += ADDRESS;
					*/

#define CCL_WriteArrayReadJump	0x0B /* Write an array element, read, and jump:
					1:A--D--D--R--E--S--S-rrrXXXXX
					2:LENGTH
					3:ELEMENET[0]
					4:ELEMENET[1]
					...
					N:A--D--D--R--E--S--S-rrrYYYYY
					------------------------------
					if (0 <= reg[rrr] < LENGTH)
					  write (ELEMENT[reg[rrr]]);
					IC += LENGTH + 2; (... pointing at N+1)
					read (reg[rrr]);
					IC += ADDRESS;
					*/
/* Note: If read is suspended, the resumed execution starts from the
219
   Nth code (YYYYY == CCL_ReadJump).  */
Karl Heuer's avatar
Karl Heuer committed
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

#define CCL_ReadJump		0x0C /* Read and jump:
					1:A--D--D--R--E--S--S-rrrYYYYY
					-----------------------------
					read (reg[rrr]);
					IC += ADDRESS;
					*/

#define CCL_Branch		0x0D /* Jump by branch table:
					1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
					2:A--D--D--R--E-S-S[0]000XXXXX
					3:A--D--D--R--E-S-S[1]000XXXXX
					...
					------------------------------
					if (0 <= reg[rrr] < CC..C)
					  IC += ADDRESS[reg[rrr]];
					else
					  IC += ADDRESS[CC..C];
					*/

#define CCL_ReadRegister	0x0E /* Read bytes into registers:
					1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
					2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
					...
					------------------------------
					while (CCC--)
					  read (reg[rrr]);
					*/

#define CCL_WriteExprConst	0x0F  /* write result of expression:
					1:00000OPERATION000RRR000XXXXX
					2:CONSTANT
					------------------------------
					write (reg[RRR] OPERATION CONSTANT);
					IC++;
					*/

/* Note: If the Nth read is suspended, the resumed execution starts
   from the Nth code.  */

#define CCL_ReadBranch		0x10 /* Read one byte into a register,
					and jump by branch table:
					1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
					2:A--D--D--R--E-S-S[0]000XXXXX
					3:A--D--D--R--E-S-S[1]000XXXXX
					...
					------------------------------
					read (read[rrr]);
					if (0 <= reg[rrr] < CC..C)
					  IC += ADDRESS[reg[rrr]];
					else
					  IC += ADDRESS[CC..C];
					*/

#define CCL_WriteRegister	0x11 /* Write registers:
					1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
					2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
					...
					------------------------------
					while (CCC--)
					  write (reg[rrr]);
					...
					*/

/* Note: If the Nth write is suspended, the resumed execution
   starts from the Nth code.  */

#define CCL_WriteExprRegister	0x12 /* Write result of expression
					1:00000OPERATIONRrrRRR000XXXXX
					------------------------------
					write (reg[RRR] OPERATION reg[Rrr]);
					*/

293 294
#define CCL_Call		0x13 /* Call the CCL program whose ID is
					(CC..C).
Karl Heuer's avatar
Karl Heuer committed
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
					1:CCCCCCCCCCCCCCCCCCCC000XXXXX
					------------------------------
					call (CC..C)
					*/

#define CCL_WriteConstString	0x14 /* Write a constant or a string:
					1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
					[2:0000STRIN[0]STRIN[1]STRIN[2]]
					[...]
					-----------------------------
					if (!rrr)
					  write (CC..C)
					else
					  write_string (STRING, CC..C);
					  IC += (CC..C + 2) / 3;
					*/

#define CCL_WriteArray		0x15 /* Write an element of array:
					1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
					2:ELEMENT[0]
					3:ELEMENT[1]
					...
					------------------------------
					if (0 <= reg[rrr] < CC..C)
					  write (ELEMENT[reg[rrr]]);
					IC += CC..C;
					*/

#define CCL_End			0x16 /* Terminate:
					1:00000000000000000000000XXXXX
					------------------------------
					terminate ();
					*/

/* The following two codes execute an assignment arithmetic/logical
   operation.  The form of the operation is like REG OP= OPERAND.  */

#define CCL_ExprSelfConst	0x17 /* REG OP= constant:
					1:00000OPERATION000000rrrXXXXX
					2:CONSTANT
					------------------------------
					reg[rrr] OPERATION= CONSTANT;
					*/

#define CCL_ExprSelfReg		0x18 /* REG1 OP= REG2:
					1:00000OPERATION000RRRrrrXXXXX
					------------------------------
					reg[rrr] OPERATION= reg[RRR];
					*/

/* The following codes execute an arithmetic/logical operation.  The
   form of the operation is like REG_X = REG_Y OP OPERAND2.  */

#define CCL_SetExprConst	0x19 /* REG_X = REG_Y OP constant:
					1:00000OPERATION000RRRrrrXXXXX
					2:CONSTANT
					------------------------------
					reg[rrr] = reg[RRR] OPERATION CONSTANT;
					IC++;
					*/

#define CCL_SetExprReg		0x1A /* REG1 = REG2 OP REG3:
					1:00000OPERATIONRrrRRRrrrXXXXX
					------------------------------
					reg[rrr] = reg[RRR] OPERATION reg[Rrr];
					*/

#define CCL_JumpCondExprConst	0x1B /* Jump conditional according to
					an operation on constant:
					1:A--D--D--R--E--S--S-rrrXXXXX
					2:OPERATION
					3:CONSTANT
					-----------------------------
					reg[7] = reg[rrr] OPERATION CONSTANT;
					if (!(reg[7]))
					  IC += ADDRESS;
					else
					  IC += 2
					*/

#define CCL_JumpCondExprReg	0x1C /* Jump conditional according to
					an operation on register:
					1:A--D--D--R--E--S--S-rrrXXXXX
					2:OPERATION
					3:RRR
					-----------------------------
					reg[7] = reg[rrr] OPERATION reg[RRR];
					if (!reg[7])
					  IC += ADDRESS;
					else
					  IC += 2;
					*/

#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
					  to an operation on constant:
					1:A--D--D--R--E--S--S-rrrXXXXX
					2:OPERATION
					3:CONSTANT
					-----------------------------
					read (reg[rrr]);
					reg[7] = reg[rrr] OPERATION CONSTANT;
					if (!reg[7])
					  IC += ADDRESS;
					else
					  IC += 2;
					*/

#define CCL_ReadJumpCondExprReg	0x1E /* Read and jump conditional according
					to an operation on register:
					1:A--D--D--R--E--S--S-rrrXXXXX
					2:OPERATION
					3:RRR
					-----------------------------
					read (reg[rrr]);
					reg[7] = reg[rrr] OPERATION reg[RRR];
					if (!reg[7])
					  IC += ADDRESS;
					else
					  IC += 2;
					*/

#define CCL_Extention		0x1F /* Extended CCL code
					1:ExtendedCOMMNDRrrRRRrrrXXXXX
					2:ARGUEMENT
					3:...
					------------------------------
					extended_command (rrr,RRR,Rrr,ARGS)
				      */

424
/* 
Kenichi Handa's avatar
Kenichi Handa committed
425
   Here after, Extended CCL Instructions.
426
   Bit length of extended command is 14.
Kenichi Handa's avatar
Kenichi Handa committed
427
   Therefore, the instruction code range is 0..16384(0x3fff).
428 429
 */

Kenichi Handa's avatar
Kenichi Handa committed
430 431 432 433 434 435 436 437 438 439 440 441 442 443
/* Read a multibyte characeter.
   A code point is stored into reg[rrr].  A charset ID is stored into
   reg[RRR].  */

#define CCL_ReadMultibyteChar2	0x00 /* Read Multibyte Character
					1:ExtendedCOMMNDRrrRRRrrrXXXXX  */

/* Write a multibyte character.
   Write a character whose code point is reg[rrr] and the charset ID
   is reg[RRR].  */

#define CCL_WriteMultibyteChar2	0x01 /* Write Multibyte Character
					1:ExtendedCOMMNDRrrRRRrrrXXXXX  */

444
/* Translate a character whose code point is reg[rrr] and the charset
445
   ID is reg[RRR] by a translation table whose ID is reg[Rrr].
Kenichi Handa's avatar
Kenichi Handa committed
446

447
   A translated character is set in reg[rrr] (code point) and reg[RRR]
Kenichi Handa's avatar
Kenichi Handa committed
448 449
   (charset ID).  */

450
#define CCL_TranslateCharacter	0x02 /* Translate a multibyte character
Kenichi Handa's avatar
Kenichi Handa committed
451 452
					1:ExtendedCOMMNDRrrRRRrrrXXXXX  */

453
/* Translate a character whose code point is reg[rrr] and the charset
454
   ID is reg[RRR] by a translation table whose ID is ARGUMENT.
Kenichi Handa's avatar
Kenichi Handa committed
455

456
   A translated character is set in reg[rrr] (code point) and reg[RRR]
Kenichi Handa's avatar
Kenichi Handa committed
457 458
   (charset ID).  */

459 460 461 462
#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
					       1:ExtendedCOMMNDRrrRRRrrrXXXXX
					       2:ARGUMENT(Translation Table ID)
					    */
Kenichi Handa's avatar
Kenichi Handa committed
463

464 465
/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
   reg[RRR]) MAP until some value is found.
Kenichi Handa's avatar
Kenichi Handa committed
466

467
   Each MAP is a Lisp vector whose element is number, nil, t, or
Kenichi Handa's avatar
Kenichi Handa committed
468
   lambda.
469
   If the element is nil, ignore the map and proceed to the next map.
Kenichi Handa's avatar
Kenichi Handa committed
470 471 472
   If the element is t or lambda, finish without changing reg[rrr].
   If the element is a number, set reg[rrr] to the number and finish.

473 474
   Detail of the map structure is descibed in the comment for
   CCL_MapMultiple below.  */
Kenichi Handa's avatar
Kenichi Handa committed
475

476
#define CCL_IterateMultipleMap	0x10 /* Iterate multiple maps
Kenichi Handa's avatar
Kenichi Handa committed
477
					1:ExtendedCOMMNDXXXRRRrrrXXXXX
478 479 480
					2:NUMBER of MAPs
					3:MAP-ID1
					4:MAP-ID2
Kenichi Handa's avatar
Kenichi Handa committed
481 482 483
					...
				     */ 

484 485
/* Map the code in reg[rrr] by MAPs starting from the Nth (N =
   reg[RRR]) map.
Kenichi Handa's avatar
Kenichi Handa committed
486

487
   MAPs are supplied in the succeeding CCL codes as follows:
Kenichi Handa's avatar
Kenichi Handa committed
488

489 490 491 492 493 494 495 496
   When CCL program gives this nested structure of map to this command:
	((MAP-ID11
	  MAP-ID12
	  (MAP-ID121 MAP-ID122 MAP-ID123)
	  MAP-ID13)
	 (MAP-ID21
	  (MAP-ID211 (MAP-ID2111) MAP-ID212)
	  MAP-ID22)),
Kenichi Handa's avatar
Kenichi Handa committed
497
   the compiled CCL codes has this sequence:
498
	CCL_MapMultiple (CCL code of this command)
499 500
	16 (total number of MAPs and SEPARATORs)
	-7 (1st SEPARATOR)
501 502
	MAP-ID11
	MAP-ID12
503
	-3 (2nd SEPARATOR)
504 505 506 507
	MAP-ID121
	MAP-ID122
	MAP-ID123
	MAP-ID13
508
	-7 (3rd SEPARATOR)
509
	MAP-ID21
510
	-4 (4th SEPARATOR)
511
	MAP-ID211
512
	-1 (5th SEPARATOR)
513 514 515
	MAP_ID2111
	MAP-ID212
	MAP-ID22
Kenichi Handa's avatar
Kenichi Handa committed
516

517
   A value of each SEPARATOR follows this rule:
518 519
	MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
	SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
Kenichi Handa's avatar
Kenichi Handa committed
520

521
   (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
Kenichi Handa's avatar
Kenichi Handa committed
522

523 524
   When some map fails to map (i.e. it doesn't have a value for
   reg[rrr]), the mapping is treated as identity.
Kenichi Handa's avatar
Kenichi Handa committed
525

526
   The mapping is iterated for all maps in each map set (set of maps
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
   separated by SEPARATOR) except in the case that lambda is
   encountered.  More precisely, the mapping proceeds as below:

   At first, VAL0 is set to reg[rrr], and it is translated by the
   first map to VAL1.  Then, VAL1 is translated by the next map to
   VAL2.  This mapping is iterated until the last map is used.  The
   result of the mapping is the last value of VAL?.

   But, when VALm is mapped to VALn and VALn is not a number, the
   mapping proceed as below:

   If VALn is nil, the lastest map is ignored and the mapping of VALm
   proceed to the next map.

   In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
   proceed to the next map.

   If VALn is lambda, the whole mapping process terminates, and VALm
   is the result of this mapping.
Kenichi Handa's avatar
Kenichi Handa committed
546

547
   Each map is a Lisp vector of the following format (a) or (b):
Kenichi Handa's avatar
Kenichi Handa committed
548 549 550
	(a)......[STARTPOINT VAL1 VAL2 ...]
	(b)......[t VAL STARTPOINT ENDPOINT],
   where
551
	STARTPOINT is an offset to be used for indexing a map,
552
	ENDPOINT is a maximum index number of a map,
Kenichi Handa's avatar
Kenichi Handa committed
553 554
	VAL and VALn is a number, nil, t, or lambda.  

555 556 557
   Valid index range of a map of type (a) is:
	STARTPOINT <= index < STARTPOINT + map_size - 1
   Valid index range of a map of type (b) is:
558
	STARTPOINT <= index < ENDPOINT	*/
Kenichi Handa's avatar
Kenichi Handa committed
559

560
#define CCL_MapMultiple 0x11	/* Mapping by multiple code conversion maps
Kenichi Handa's avatar
Kenichi Handa committed
561 562 563
					 1:ExtendedCOMMNDXXXRRRrrrXXXXX
					 2:N-2
					 3:SEPARATOR_1 (< 0)
564 565
					 4:MAP-ID_1
					 5:MAP-ID_2
Kenichi Handa's avatar
Kenichi Handa committed
566 567
					 ...
					 M:SEPARATOR_x (< 0)
568
					 M+1:MAP-ID_y
Kenichi Handa's avatar
Kenichi Handa committed
569 570 571 572
					 ...
					 N:SEPARATOR_z (< 0)
				      */

573
#define MAX_MAP_SET_LEVEL 20
Kenichi Handa's avatar
Kenichi Handa committed
574 575 576 577 578 579 580

typedef struct
{
  int rest_length;
  int orig_val;
} tr_stack;

581 582
static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
static tr_stack *mapping_stack_pointer;
Kenichi Handa's avatar
Kenichi Handa committed
583

584
#define PUSH_MAPPING_STACK(restlen, orig)                 \
Kenichi Handa's avatar
Kenichi Handa committed
585
{                                                           \
586 587 588
  mapping_stack_pointer->rest_length = (restlen);         \
  mapping_stack_pointer->orig_val = (orig);               \
  mapping_stack_pointer++;                                \
Kenichi Handa's avatar
Kenichi Handa committed
589 590
}

591
#define POP_MAPPING_STACK(restlen, orig)                  \
Kenichi Handa's avatar
Kenichi Handa committed
592
{                                                           \
593 594 595
  mapping_stack_pointer--;                                \
  (restlen) = mapping_stack_pointer->rest_length;         \
  (orig) = mapping_stack_pointer->orig_val;               \
Kenichi Handa's avatar
Kenichi Handa committed
596 597
}                                                           \

598
#define CCL_MapSingle		0x12 /* Map by single code conversion map
Kenichi Handa's avatar
Kenichi Handa committed
599
					1:ExtendedCOMMNDXXXRRRrrrXXXXX
600
					2:MAP-ID
Kenichi Handa's avatar
Kenichi Handa committed
601
					------------------------------
602 603
					Map reg[rrr] by MAP-ID.
					If some valid mapping is found,
Kenichi Handa's avatar
Kenichi Handa committed
604 605 606 607
					  set reg[rrr] to the result,
					else
					  set reg[RRR] to -1.
				     */
Karl Heuer's avatar
Karl Heuer committed
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

/* CCL arithmetic/logical operators. */
#define CCL_PLUS	0x00	/* X = Y + Z */
#define CCL_MINUS	0x01	/* X = Y - Z */
#define CCL_MUL		0x02	/* X = Y * Z */
#define CCL_DIV		0x03	/* X = Y / Z */
#define CCL_MOD		0x04	/* X = Y % Z */
#define CCL_AND		0x05	/* X = Y & Z */
#define CCL_OR		0x06	/* X = Y | Z */
#define CCL_XOR		0x07	/* X = Y ^ Z */
#define CCL_LSH		0x08	/* X = Y << Z */
#define CCL_RSH		0x09	/* X = Y >> Z */
#define CCL_LSH8	0x0A	/* X = (Y << 8) | Z */
#define CCL_RSH8	0x0B	/* X = Y >> 8, r[7] = Y & 0xFF  */
#define CCL_DIVMOD	0x0C	/* X = Y / Z, r[7] = Y % Z */
#define CCL_LS		0x10	/* X = (X < Y) */
#define CCL_GT		0x11	/* X = (X > Y) */
#define CCL_EQ		0x12	/* X = (X == Y) */
#define CCL_LE		0x13	/* X = (X <= Y) */
#define CCL_GE		0x14	/* X = (X >= Y) */
#define CCL_NE		0x15	/* X = (X != Y) */

630
#define CCL_DECODE_SJIS 0x16	/* X = HIGHER_BYTE (DE-SJIS (Y, Z))
Karl Heuer's avatar
Karl Heuer committed
631
				   r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
632 633
#define CCL_ENCODE_SJIS 0x17	/* X = HIGHER_BYTE (SJIS (Y, Z))
				   r[7] = LOWER_BYTE (SJIS (Y, Z) */
Karl Heuer's avatar
Karl Heuer committed
634 635 636 637 638 639 640 641 642 643 644

/* Terminate CCL program successfully.  */
#define CCL_SUCCESS		   	\
  do {				   	\
    ccl->status = CCL_STAT_SUCCESS;	\
    goto ccl_finish;		   	\
  } while (0)

/* Suspend CCL program because of reading from empty input buffer or
   writing to full output buffer.  When this program is resumed, the
   same I/O command is executed.  */
645 646 647 648 649
#define CCL_SUSPEND(stat)	\
  do {				\
    ic--;			\
    ccl->status = stat;		\
    goto ccl_finish;		\
Karl Heuer's avatar
Karl Heuer committed
650 651 652 653 654 655 656 657 658 659 660
  } while (0)

/* Terminate CCL program because of invalid command.  Should not occur
   in the normal case.  */
#define CCL_INVALID_CMD		     	\
  do {				     	\
    ccl->status = CCL_STAT_INVALID_CMD;	\
    goto ccl_error_handler;	     	\
  } while (0)

/* Encode one character CH to multibyte form and write to the current
661
   output buffer.  If CH is less than 256, CH is written as is.  */
662 663 664 665 666 667 668 669 670 671
#define CCL_WRITE_CHAR(ch)				\
  do {							\
    if (!dst)						\
      CCL_INVALID_CMD;					\
    else						\
      {							\
	unsigned char work[4], *str;			\
	int len = CHAR_STRING (ch, work, str);		\
	if (dst + len <= (dst_bytes ? dst_end : src))	\
	  {						\
672
	    while (len--) *dst++ = *str++;		\
673 674 675 676
	  }						\
	else						\
	  CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST);	\
      }							\
Karl Heuer's avatar
Karl Heuer committed
677 678 679 680 681 682 683 684
  } while (0)

/* Write a string at ccl_prog[IC] of length LEN to the current output
   buffer.  */
#define CCL_WRITE_STRING(len)				\
  do {							\
    if (!dst)						\
      CCL_INVALID_CMD;					\
685
    else if (dst + len <= (dst_bytes ? dst_end : src))	\
Karl Heuer's avatar
Karl Heuer committed
686 687 688 689
      for (i = 0; i < len; i++)				\
	*dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)]))	\
		  >> ((2 - (i % 3)) * 8)) & 0xFF;	\
    else						\
690
      CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST);		\
Karl Heuer's avatar
Karl Heuer committed
691 692 693
  } while (0)

/* Read one byte from the current input buffer into Rth register.  */
694 695 696 697 698 699 700 701 702
#define CCL_READ_CHAR(r)			\
  do {						\
    if (!src)					\
      CCL_INVALID_CMD;				\
    else if (src < src_end)			\
      r = *src++;				\
    else if (ccl->last_block)			\
      {						\
        ic = ccl->eof_ic;			\
703
        goto ccl_repeat;			\
704 705 706
      }						\
    else					\
      CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);	\
Karl Heuer's avatar
Karl Heuer committed
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
  } while (0)


/* Execute CCL code on SRC_BYTES length text at SOURCE.  The resulting
   text goes to a place pointed by DESTINATION, the length of which
   should not exceed DST_BYTES.  The bytes actually processed is
   returned as *CONSUMED.  The return value is the length of the
   resulting text.  As a side effect, the contents of CCL registers
   are updated.  If SOURCE or DESTINATION is NULL, only operations on
   registers are permitted.  */

#ifdef CCL_DEBUG
#define CCL_DEBUG_BACKTRACE_LEN 256
int ccl_backtrace_table[CCL_BACKTRACE_TABLE];
int ccl_backtrace_idx;
#endif

struct ccl_prog_stack
  {
726
    Lisp_Object *ccl_prog;	/* Pointer to an array of CCL code.  */
Karl Heuer's avatar
Karl Heuer committed
727 728 729
    int ic;			/* Instruction Counter.  */
  };

Andreas Schwab's avatar
Andreas Schwab committed
730
int
Karl Heuer's avatar
Karl Heuer committed
731 732 733 734 735 736 737 738 739
ccl_driver (ccl, source, destination, src_bytes, dst_bytes, consumed)
     struct ccl_program *ccl;
     unsigned char *source, *destination;
     int src_bytes, dst_bytes;
     int *consumed;
{
  register int *reg = ccl->reg;
  register int ic = ccl->ic;
  register int code, field1, field2;
740
  register Lisp_Object *ccl_prog = ccl->prog;
Karl Heuer's avatar
Karl Heuer committed
741 742 743 744 745 746 747
  unsigned char *src = source, *src_end = src + src_bytes;
  unsigned char *dst = destination, *dst_end = dst + dst_bytes;
  int jump_address;
  int i, j, op;
  int stack_idx = 0;
  /* For the moment, we only support depth 256 of stack.  */ 
  struct ccl_prog_stack ccl_prog_stack_struct[256];
748 749
  /* Instruction counter of the current CCL code. */
  int this_ic;
Karl Heuer's avatar
Karl Heuer committed
750 751 752 753

  if (ic >= ccl->eof_ic)
    ic = CCL_HEADER_MAIN;

754 755 756
  if (ccl->buf_magnification ==0) /* We can't produce any bytes.  */
    dst = NULL;

Karl Heuer's avatar
Karl Heuer committed
757 758 759 760 761 762
#ifdef CCL_DEBUG
  ccl_backtrace_idx = 0;
#endif

  for (;;)
    {
763
    ccl_repeat:
Karl Heuer's avatar
Karl Heuer committed
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
#ifdef CCL_DEBUG
      ccl_backtrace_table[ccl_backtrace_idx++] = ic;
      if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
	ccl_backtrace_idx = 0;
      ccl_backtrace_table[ccl_backtrace_idx] = 0;
#endif

      if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
	{
	  /* We can't just signal Qquit, instead break the loop as if
             the whole data is processed.  Don't reset Vquit_flag, it
             must be handled later at a safer place.  */
	  if (consumed)
	    src = source + src_bytes;
	  ccl->status = CCL_STAT_QUIT;
	  break;
	}

782
      this_ic = ic;
Karl Heuer's avatar
Karl Heuer committed
783 784 785 786 787 788 789 790
      code = XINT (ccl_prog[ic]); ic++;
      field1 = code >> 8;
      field2 = (code & 0xFF) >> 5;

#define rrr field2
#define RRR (field1 & 7)
#define Rrr ((field1 >> 3) & 7)
#define ADDR field1
791
#define EXCMD (field1 >> 6)
Karl Heuer's avatar
Karl Heuer committed
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

      switch (code & 0x1F)
	{
	case CCL_SetRegister:	/* 00000000000000000RRRrrrXXXXX */
	  reg[rrr] = reg[RRR];
	  break;

	case CCL_SetShortConst:	/* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
	  reg[rrr] = field1;
	  break;

	case CCL_SetConst:	/* 00000000000000000000rrrXXXXX */
	  reg[rrr] = XINT (ccl_prog[ic]);
	  ic++;
	  break;

	case CCL_SetArray:	/* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
	  i = reg[RRR];
	  j = field1 >> 3;
	  if ((unsigned int) i < j)
	    reg[rrr] = XINT (ccl_prog[ic + i]);
	  ic += j;
	  break;

	case CCL_Jump:		/* A--D--D--R--E--S--S-000XXXXX */
	  ic += ADDR;
	  break;

	case CCL_JumpCond:	/* A--D--D--R--E--S--S-rrrXXXXX */
	  if (!reg[rrr])
	    ic += ADDR;
	  break;

	case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
	  i = reg[rrr];
	  CCL_WRITE_CHAR (i);
	  ic += ADDR;
	  break;

	case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
	  i = reg[rrr];
	  CCL_WRITE_CHAR (i);
	  ic++;
	  CCL_READ_CHAR (reg[rrr]);
	  ic += ADDR - 1;
	  break;

	case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
	  i = XINT (ccl_prog[ic]);
	  CCL_WRITE_CHAR (i);
	  ic += ADDR;
	  break;

	case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
	  i = XINT (ccl_prog[ic]);
	  CCL_WRITE_CHAR (i);
	  ic++;
	  CCL_READ_CHAR (reg[rrr]);
	  ic += ADDR - 1;
	  break;

	case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
	  j = XINT (ccl_prog[ic]);
	  ic++;
	  CCL_WRITE_STRING (j);
	  ic += ADDR - 1;
	  break;

	case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
	  i = reg[rrr];
862
	  j = XINT (ccl_prog[ic]);
Karl Heuer's avatar
Karl Heuer committed
863 864
	  if ((unsigned int) i < j)
	    {
865
	      i = XINT (ccl_prog[ic + 1 + i]);
Karl Heuer's avatar
Karl Heuer committed
866 867
	      CCL_WRITE_CHAR (i);
	    }
868
	  ic += j + 2;
Karl Heuer's avatar
Karl Heuer committed
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	  CCL_READ_CHAR (reg[rrr]);
	  ic += ADDR - (j + 2);
	  break;

	case CCL_ReadJump:	/* A--D--D--R--E--S--S-rrrYYYYY */
	  CCL_READ_CHAR (reg[rrr]);
	  ic += ADDR;
	  break;

	case CCL_ReadBranch:	/* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
	  CCL_READ_CHAR (reg[rrr]);
	  /* fall through ... */
	case CCL_Branch:	/* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
	  if ((unsigned int) reg[rrr] < field1)
	    ic += XINT (ccl_prog[ic + reg[rrr]]);
	  else
	    ic += XINT (ccl_prog[ic + field1]);
	  break;

	case CCL_ReadRegister:	/* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
	  while (1)
	    {
	      CCL_READ_CHAR (reg[rrr]);
	      if (!field1) break;
	      code = XINT (ccl_prog[ic]); ic++;
	      field1 = code >> 8;
	      field2 = (code & 0xFF) >> 5;
	    }
	  break;

	case CCL_WriteExprConst:  /* 1:00000OPERATION000RRR000XXXXX */
	  rrr = 7;
	  i = reg[RRR];
	  j = XINT (ccl_prog[ic]);
	  op = field1 >> 6;
	  ic++;
	  goto ccl_set_expr;

	case CCL_WriteRegister:	/* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
	  while (1)
	    {
	      i = reg[rrr];
	      CCL_WRITE_CHAR (i);
	      if (!field1) break;
	      code = XINT (ccl_prog[ic]); ic++;
	      field1 = code >> 8;
	      field2 = (code & 0xFF) >> 5;
	    }
	  break;

	case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
	  rrr = 7;
	  i = reg[RRR];
	  j = reg[Rrr];
	  op = field1 >> 6;
	  goto ccl_set_expr;

	case CCL_Call:		/* CCCCCCCCCCCCCCCCCCCC000XXXXX */
	  {
	    Lisp_Object slot;

	    if (stack_idx >= 256
		|| field1 < 0
		|| field1 >= XVECTOR (Vccl_program_table)->size
		|| (slot = XVECTOR (Vccl_program_table)->contents[field1],
		    !CONSP (slot))
		|| !VECTORP (XCONS (slot)->cdr))
	      {
		if (stack_idx > 0)
		  {
		    ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
		    ic = ccl_prog_stack_struct[0].ic;
		  }
		CCL_INVALID_CMD;
	      }
	    
	    ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
	    ccl_prog_stack_struct[stack_idx].ic = ic;
	    stack_idx++;
	    ccl_prog = XVECTOR (XCONS (slot)->cdr)->contents;
	    ic = CCL_HEADER_MAIN;
	  }
	  break;

	case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
	  if (!rrr)
	    CCL_WRITE_CHAR (field1);
	  else
	    {
	      CCL_WRITE_STRING (field1);
	      ic += (field1 + 2) / 3;
	    }
	  break;

	case CCL_WriteArray:	/* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
	  i = reg[rrr];
	  if ((unsigned int) i < field1)
	    {
	      j = XINT (ccl_prog[ic + i]);
	      CCL_WRITE_CHAR (j);
	    }
	  ic += field1;
	  break;

	case CCL_End:		/* 0000000000000000000000XXXXX */
	  if (stack_idx-- > 0)
	    {
	      ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
	      ic = ccl_prog_stack_struct[stack_idx].ic;
	      break;
	    }
980 981 982 983 984
	  if (src)
	    src = src_end;
	  /* ccl->ic should points to this command code again to
             suppress further processing.  */
	  ic--;
Karl Heuer's avatar
Karl Heuer committed
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	  CCL_SUCCESS;

	case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
	  i = XINT (ccl_prog[ic]);
	  ic++;
	  op = field1 >> 6;
	  goto ccl_expr_self;

	case CCL_ExprSelfReg:	/* 00000OPERATION000RRRrrrXXXXX */
	  i = reg[RRR];
	  op = field1 >> 6;

	ccl_expr_self:
	  switch (op)
	    {
	    case CCL_PLUS: reg[rrr] += i; break;
	    case CCL_MINUS: reg[rrr] -= i; break;
	    case CCL_MUL: reg[rrr] *= i; break;
	    case CCL_DIV: reg[rrr] /= i; break;
	    case CCL_MOD: reg[rrr] %= i; break;
	    case CCL_AND: reg[rrr] &= i; break;
	    case CCL_OR: reg[rrr] |= i; break;
	    case CCL_XOR: reg[rrr] ^= i; break;
	    case CCL_LSH: reg[rrr] <<= i; break;
	    case CCL_RSH: reg[rrr] >>= i; break;
	    case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
	    case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
	    case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
	    case CCL_LS: reg[rrr] = reg[rrr] < i; break;
	    case CCL_GT: reg[rrr] = reg[rrr] > i; break;
	    case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
	    case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
	    case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
	    case CCL_NE: reg[rrr] = reg[rrr] != i; break;
	    default: CCL_INVALID_CMD;
	    }
	  break;

	case CCL_SetExprConst:	/* 00000OPERATION000RRRrrrXXXXX */
	  i = reg[RRR];
	  j = XINT (ccl_prog[ic]);
	  op = field1 >> 6;
	  jump_address = ++ic;
	  goto ccl_set_expr;

	case CCL_SetExprReg:	/* 00000OPERATIONRrrRRRrrrXXXXX */
	  i = reg[RRR];
	  j = reg[Rrr];
	  op = field1 >> 6;
	  jump_address = ic;
	  goto ccl_set_expr;

	case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
	  CCL_READ_CHAR (reg[rrr]);
	case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
	  i = reg[rrr];
	  op = XINT (ccl_prog[ic]);
	  jump_address = ic++ + ADDR;
	  j = XINT (ccl_prog[ic]);
	  ic++;
	  rrr = 7;
	  goto ccl_set_expr;

	case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
	  CCL_READ_CHAR (reg[rrr]);
	case CCL_JumpCondExprReg:
	  i = reg[rrr];
	  op = XINT (ccl_prog[ic]);
	  jump_address = ic++ + ADDR;
	  j = reg[XINT (ccl_prog[ic])];
	  ic++;
	  rrr = 7;

	ccl_set_expr:
	  switch (op)
	    {
	    case CCL_PLUS: reg[rrr] = i + j; break;
	    case CCL_MINUS: reg[rrr] = i - j; break;
	    case CCL_MUL: reg[rrr] = i * j; break;
	    case CCL_DIV: reg[rrr] = i / j; break;
	    case CCL_MOD: reg[rrr] = i % j; break;
	    case CCL_AND: reg[rrr] = i & j; break;
	    case CCL_OR: reg[rrr] = i | j; break;
	    case CCL_XOR: reg[rrr] = i ^ j;; break;
	    case CCL_LSH: reg[rrr] = i << j; break;
	    case CCL_RSH: reg[rrr] = i >> j; break;
	    case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
	    case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
	    case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
	    case CCL_LS: reg[rrr] = i < j; break;
	    case CCL_GT: reg[rrr] = i > j; break;
	    case CCL_EQ: reg[rrr] = i == j; break;
	    case CCL_LE: reg[rrr] = i <= j; break;
	    case CCL_GE: reg[rrr] = i >= j; break;
	    case CCL_NE: reg[rrr] = i != j; break;
	    case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break;
1081
	    case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break;
Karl Heuer's avatar
Karl Heuer committed
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	    default: CCL_INVALID_CMD;
	    }
	  code &= 0x1F;
	  if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
	    {
	      i = reg[rrr];
	      CCL_WRITE_CHAR (i);
	    }
	  else if (!reg[rrr])
	    ic = jump_address;
	  break;

1094 1095 1096
	case CCL_Extention:
	  switch (EXCMD)
	    {
Kenichi Handa's avatar
Kenichi Handa committed
1097
	    case CCL_ReadMultibyteChar2:
1098 1099 1100 1101
	      if (!src)
		CCL_INVALID_CMD;
	      do {
		if (src >= src_end)
Kenichi Handa's avatar
Kenichi Handa committed
1102 1103 1104 1105
		  {
		    src++;
		    goto ccl_read_multibyte_character_suspend;
		  }
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	      
		i = *src++;
		if (i == LEADING_CODE_COMPOSITION)
		  {
		    if (src >= src_end)
		      goto ccl_read_multibyte_character_suspend;
		    if (*src == 0xFF)
		      {
			ccl->private_state = COMPOSING_WITH_RULE_HEAD;
			src++;
		      }
		    else
		      ccl->private_state = COMPOSING_NO_RULE_HEAD;
		  }
		if (ccl->private_state != 0)
		  {
		    /* composite character */
		    if (*src < 0xA0)
		      ccl->private_state = 0;
		    else
		      {
			if (i == 0xA0)
			  {
			    if (src >= src_end)
			      goto ccl_read_multibyte_character_suspend;
			    i = *src++ & 0x7F;
			  }
			else
			  i -= 0x20;

			if (COMPOSING_WITH_RULE_RULE == ccl->private_state)
			  {
			    ccl->private_state = COMPOSING_WITH_RULE_HEAD;
			    continue;
			  }
			else if (COMPOSING_WITH_RULE_HEAD == ccl->private_state)
			  ccl->private_state = COMPOSING_WITH_RULE_RULE;
		      }
		  }
		if (i < 0x80)
		  {
		    /* ASCII */
		    reg[rrr] = i;
		    reg[RRR] = CHARSET_ASCII;
		  }
		else if (i <= MAX_CHARSET_OFFICIAL_DIMENSION1)
		  {
		    if (src >= src_end)
		      goto ccl_read_multibyte_character_suspend;
		    reg[RRR] = i;
		    reg[rrr] = (*src++ & 0x7F);
		  }
		else if (i <= MAX_CHARSET_OFFICIAL_DIMENSION2)
		  {
		    if ((src + 1) >= src_end)
		      goto ccl_read_multibyte_character_suspend;
		    reg[RRR] = i;
		    i = (*src++ & 0x7F);
		    reg[rrr] = ((i << 7) | (*src & 0x7F));
		    src++;
		  }
Kenichi Handa's avatar
Kenichi Handa committed
1167 1168
		else if ((i == LEADING_CODE_PRIVATE_11)
			 || (i == LEADING_CODE_PRIVATE_12))
1169 1170 1171 1172 1173 1174
		  {
		    if ((src + 1) >= src_end)
		      goto ccl_read_multibyte_character_suspend;
		    reg[RRR] = *src++;
		    reg[rrr] = (*src++ & 0x7F);
		  }
Kenichi Handa's avatar
Kenichi Handa committed
1175 1176
		else if ((i == LEADING_CODE_PRIVATE_21)
			 || (i == LEADING_CODE_PRIVATE_22))
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
		  {
		    if ((src + 2) >= src_end)
		      goto ccl_read_multibyte_character_suspend;
		    reg[RRR] = *src++;
		    i = (*src++ & 0x7F);
		    reg[rrr] = ((i << 7) | (*src & 0x7F));
		    src++;
		  }
		else
		  {
1187 1188 1189
		    /* INVALID CODE.  Return a single byte character.  */
		    reg[RRR] = CHARSET_ASCII;
		    reg[rrr] = i;
1190 1191 1192 1193 1194 1195 1196 1197 1198
		  }
	      } while (0);
	      break;

	    ccl_read_multibyte_character_suspend:
	      src--;
	      if (ccl->last_block)
		{
		  ic = ccl->eof_ic;
Kenichi Handa's avatar
Kenichi Handa committed
1199
		  goto ccl_repeat;
1200 1201 1202 1203 1204 1205
		}
	      else
		CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);

	      break;

Kenichi Handa's avatar
Kenichi Handa committed
1206
	    case CCL_WriteMultibyteChar2:
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	      i = reg[RRR]; /* charset */
	      if (i == CHARSET_ASCII)
		i = reg[rrr] & 0x7F;
	      else if (i == CHARSET_COMPOSITION)
		i = MAKE_COMPOSITE_CHAR (reg[rrr]);
	      else if (CHARSET_DIMENSION (i) == 1)
		i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
	      else if (i < MIN_CHARSET_PRIVATE_DIMENSION2)
		i = ((i - 0x8F) << 14) | reg[rrr];
	      else
		i = ((i - 0xE0) << 14) | reg[rrr];

	      CCL_WRITE_CHAR (i);

	      break;

1223
	    case CCL_TranslateCharacter:
1224 1225
	      i = reg[RRR]; /* charset */
	      if (i == CHARSET_ASCII)
1226
		i = reg[rrr];
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	      else if (i == CHARSET_COMPOSITION)
		{
		  reg[RRR] = -1;
		  break;
		}
	      else if (CHARSET_DIMENSION (i) == 1)
		i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
	      else if (i < MIN_CHARSET_PRIVATE_DIMENSION2)
		i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF);
	      else
		i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF);

1239 1240
	      op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]),
				   i, -1, 0, 0);
1241 1242 1243 1244 1245 1246 1247
	      SPLIT_CHAR (op, reg[RRR], i, j);
	      if (j != -1)
		i = (i << 7) | j;
	      
	      reg[rrr] = i;
	      break;

1248
	    case CCL_TranslateCharacterConstTbl:
1249 1250 1251 1252
	      op = XINT (ccl_prog[ic]); /* table */
	      ic++;
	      i = reg[RRR]; /* charset */
	      if (i == CHARSET_ASCII)
1253
		i = reg[rrr];
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	      else if (i == CHARSET_COMPOSITION)
		{
		  reg[RRR] = -1;
		  break;
		}
	      else if (CHARSET_DIMENSION (i) == 1)
		i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
	      else if (i < MIN_CHARSET_PRIVATE_DIMENSION2)
		i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF);
	      else
		i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF);

1266
	      op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0);
1267 1268 1269 1270 1271 1272 1273 1274 1275
	      SPLIT_CHAR (op, reg[RRR], i, j);
	      if (j != -1)
		i = (i << 7) | j;
	      
	      reg[rrr] = i;
	      break;

	    case CCL_IterateMultipleMap:
	      {
1276
		Lisp_Object map, content, attrib, value;
1277 1278
		int point, size, fin_ic;

1279
		j = XINT (ccl_prog[ic++]); /* number of maps. */
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		fin_ic = ic + j;
		op = reg[rrr];
		if ((j > reg[RRR]) && (j >= 0))
		  {
		    ic += reg[RRR];
		    i = reg[RRR];
		  }
		else
		  {
		    reg[RRR] = -1;
		    ic = fin_ic;
		    break;
		  }

		for (;i < j;i++)
		  {

1297
		    size = XVECTOR (Vcode_conversion_map_vector)->size;
1298
		    point = XINT (ccl_prog[ic++]);
1299
		    if (point >= size) continue;
1300 1301 1302 1303 1304 1305 1306 1307
		    map =
		      XVECTOR (Vcode_conversion_map_vector)->contents[point];

		    /* Check map varidity.  */
		    if (!CONSP (map)) continue;
		    map = XCONS(map)->cdr;
		    if (!VECTORP (map)) continue;
		    size = XVECTOR (map)->size;
1308
		    if (size <= 1) continue;
Kenichi Handa's avatar
Kenichi Handa committed
1309

1310
		    content = XVECTOR (map)->contents[0];
Kenichi Handa's avatar
Kenichi Handa committed
1311

1312
		    /* check map type,
Kenichi Handa's avatar
Kenichi Handa committed
1313 1314 1315 1316 1317 1318 1319
		       [STARTPOINT VAL1 VAL2 ...] or
		       [t ELELMENT STARTPOINT ENDPOINT]  */
		    if (NUMBERP (content))
		      {
			point = XUINT (content);
			point = op - point + 1;
			if (!((point >= 1) && (point < size))) continue;
1320
			content = XVECTOR (map)->contents[point];
Kenichi Handa's avatar
Kenichi Handa committed
1321 1322 1323 1324
		      }
		    else if (EQ (content, Qt))
		      {
			if (size != 4) continue;
1325 1326 1327
			if ((op >= XUINT (XVECTOR (map)->contents[2]))
			    && (op < XUINT (XVECTOR (map)->contents[3])))
			  content = XVECTOR (map)->contents[1];
Kenichi Handa's avatar
Kenichi Handa committed
1328 1329 1330 1331 1332
			else
			  continue;
		      }
		    else 
		      continue;
1333 1334 1335 1336 1337 1338

		    if (NILP (content))
		      continue;
		    else if (NUMBERP (content))
		      {
			reg[RRR] = i;
Kenichi Handa's avatar
Kenichi Handa committed
1339
			reg[rrr] = XINT(content);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
			break;
		      }
		    else if (EQ (content, Qt) || EQ (content, Qlambda))
		      {
			reg[RRR] = i;
			break;
		      }
		    else if (CONSP (content))
		      {
			attrib = XCONS (content)->car;
			value = XCONS (content)->cdr;
			if (!NUMBERP (attrib) || !NUMBERP (value))
			  continue;
			reg[RRR] = i;
Kenichi Handa's avatar
Kenichi Handa committed
1354
			reg[rrr] = XUINT (value);
1355 1356 1357 1358 1359 1360 1361 1362 1363
			break;
		      }
		  }
		if (i == j)
		  reg[RRR] = -1;
		ic = fin_ic;
	      }
	      break;
	      
1364
	    case CCL_MapMultiple:
1365
	      {
1366 1367 1368 1369 1370 1371 1372 1373
		Lisp_Object map, content, attrib, value;
		int point, size, map_vector_size;
		int map_set_rest_length, fin_ic;

		map_set_rest_length =
		  XINT (ccl_prog[ic++]); /* number of maps and separators. */
		fin_ic = ic + map_set_rest_length;
		if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
1374 1375 1376
		  {
		    ic += reg[RRR];
		    i = reg[RRR];
1377
		    map_set_rest_length -= i;
1378 1379 1380 1381 1382 1383 1384
		  }
		else
		  {
		    ic = fin_ic;
		    reg[RRR] = -1;
		    break;
		  }
1385
		mapping_stack_pointer = mapping_stack;
1386
		op = reg[rrr];
1387
		PUSH_MAPPING_STACK (0, op);
1388
		reg[RRR] = -1;
1389 1390
		map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size;
		for (;map_set_rest_length > 0;i++, map_set_rest_length--)
1391
		  {
Kenichi Handa's avatar
Kenichi Handa committed
1392 1393
		    point = XINT(ccl_prog[ic++]);
		    if (point < 0)
1394
		      {
Kenichi Handa's avatar
Kenichi Handa committed
1395
			point = -point;
1396 1397
			if (mapping_stack_pointer
			    >= &mapping_stack[MAX_MAP_SET_LEVEL])
Kenichi Handa's avatar
Kenichi Handa committed
1398 1399 1400
			  {
			    CCL_INVALID_CMD;
			  }
1401 1402 1403
			PUSH_MAPPING_STACK (map_set_rest_length - point,
					    reg[rrr]);
			map_set_rest_length = point + 1;
Kenichi Handa's avatar
Kenichi Handa committed
1404
			reg[rrr] = op;
1405 1406
			continue;
		      }
Kenichi Handa's avatar
Kenichi Handa committed
1407

1408 1409 1410
		    if (point >= map_vector_size) continue;
		    map = (XVECTOR (Vcode_conversion_map_vector)
			   ->contents[point]);
Kenichi Handa's avatar
Kenichi Handa committed
1411

1412 1413 1414 1415 1416
		    /* Check map varidity.  */
		    if (!CONSP (map)) continue;
		    map = XCONS (map)->cdr;
		    if (!VECTORP (map)) continue;
		    size = XVECTOR (map)->size;
1417
		    if (size <= 1) continue;
Kenichi Handa's avatar
Kenichi Handa committed
1418

1419
		    content = XVECTOR (map)->contents[0];
Kenichi Handa's avatar
Kenichi Handa committed
1420

1421
		    /* check map type,
Kenichi Handa's avatar
Kenichi Handa committed
1422 1423 1424 1425 1426 1427 1428
		       [STARTPOINT VAL1 VAL2 ...] or
		       [t ELEMENT STARTPOINT ENDPOINT]  */
		    if (NUMBERP (content))
		      {
			point = XUINT (content);
			point = op - point + 1;
			if (!((point >= 1) && (point < size))) continue;
1429
			content = XVECTOR (map)->contents[point];
Kenichi Handa's avatar
Kenichi Handa committed
1430 1431 1432 1433
		      }
		    else if (EQ (content, Qt))
		      {
			if (size != 4) continue;
1434 1435 1436
			if ((op >= XUINT (XVECTOR (map)->contents[2])) &&
			    (op < XUINT (XVECTOR (map)->contents[3])))
			  content = XVECTOR (map)->contents[1];
Kenichi Handa's avatar
Kenichi Handa committed
1437 1438 1439 1440 1441
			else
			  continue;
		      }
		    else 
		      continue;