maintaining.texi 34.3 KB
Newer Older
Glenn Morris's avatar
Glenn Morris committed
1 2
@c This is part of the Emacs manual.
@c Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997, 1999, 2000,
Glenn Morris's avatar
Glenn Morris committed
@c   2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
Glenn Morris's avatar
Glenn Morris committed
4 5 6 7 8 9 10 11 12 13 14
@c See file emacs.texi for copying conditions.
@node Maintaining, Abbrevs, Building, Top
@chapter Maintaining Large Programs

  This chapter describes Emacs features for maintaining large
programs.  The version control features (@pxref{Version Control}) are
also particularly useful for this purpose.

* Change Log::	        Maintaining a change history for your program.
* Format of ChangeLog:: What the change log file looks like.
* Tags::	        Go directly to any function in your program in one
Glenn Morris's avatar
Glenn Morris committed
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
			  command.  Tags remembers which file it is in.
* Emerge::              A convenient way of merging two versions of a program.
@end ifnottex
@end menu

@node Change Log
@section Change Logs

  A change log file contains a chronological record of when and why you
have changed a program, consisting of a sequence of entries describing
individual changes.  Normally it is kept in a file called
@file{ChangeLog} in the same directory as the file you are editing, or
one of its parent directories.  A single @file{ChangeLog} file can
record changes for all the files in its directory and all its

@cindex change log
@kindex C-x 4 a
@findex add-change-log-entry-other-window
  The Emacs command @kbd{C-x 4 a} adds a new entry to the change log
file for the file you are editing
(@code{add-change-log-entry-other-window}).  If that file is actually
a backup file, it makes an entry appropriate for the file's
parent---that is useful for making log entries for functions that
have been deleted in the current version.

  @kbd{C-x 4 a} visits the change log file and creates a new entry
unless the most recent entry is for today's date and your name.  It
also creates a new item for the current file.  For many languages, it
can even guess the name of the function or other object that was

@vindex add-log-keep-changes-together
  When the variable @code{add-log-keep-changes-together} is
non-@code{nil}, @kbd{C-x 4 a} adds to any existing item for the file
rather than starting a new item.

@vindex add-log-always-start-new-record
  If @code{add-log-always-start-new-record} is non-@code{nil},
@kbd{C-x 4 a} always makes a new entry, even if the last entry
was made by you and on the same date.

@vindex change-log-version-info-enabled
@vindex change-log-version-number-regexp-list
@cindex file version in change log entries
  If the value of the variable @code{change-log-version-info-enabled}
is non-@code{nil}, @kbd{C-x 4 a} adds the file's version number to the
change log entry.  It finds the version number by searching the first
ten percent of the file, using regular expressions from the variable

@cindex Change Log mode
@findex change-log-mode
  The change log file is visited in Change Log mode.  In this major
mode, each bunch of grouped items counts as one paragraph, and each
entry is considered a page.  This facilitates editing the entries.
@kbd{C-j} and auto-fill indent each new line like the previous line;
this is convenient for entering the contents of an entry.

76 77 78 79 80 81
You can use the @code{next-error} command (by default bound to
@kbd{C-x `}) to move between entries in the Change Log, when Change
Log mode is on.  You will jump to the actual site in the file that was
changed, not just to the next Change Log entry.  You can also use
@code{previous-error} to move back in the same list.

Glenn Morris's avatar
Glenn Morris committed
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
@findex change-log-merge
  You can use the command @kbd{M-x change-log-merge} to merge other
log files into a buffer in Change Log Mode, preserving the date
ordering of entries.

  Version control systems are another way to keep track of changes in your
program and keep a change log.  @xref{Log Buffer}.

@node Format of ChangeLog
@section Format of ChangeLog

  A change log entry starts with a header line that contains the current
date, your name, and your email address (taken from the variable
@code{add-log-mailing-address}).  Aside from these header lines, every
line in the change log starts with a space or a tab.  The bulk of the
entry consists of @dfn{items}, each of which starts with a line starting
with whitespace and a star.  Here are two entries, both dated in May
1993, with two items and one item respectively.

@end iftex
1993-05-25  Richard Stallman  <>

        * man.el: Rename symbols `man-*' to `Man-*'.
        (manual-entry): Make prompt string clearer.

        * simple.el (blink-matching-paren-distance):
        Change default to 12,000.

1993-05-24  Richard Stallman  <>

        * vc.el (minor-mode-map-alist): Don't use it if it's void.
        (vc-cancel-version): Doc fix.
@end smallexample

  One entry can describe several changes; each change should have its
own item, or its own line in an item.  Normally there should be a
blank line between items.  When items are related (parts of the same
change, in different places), group them by leaving no blank line
between them.

  You should put a copyright notice and permission notice at the
end of the change log file.  Here is an example:

Copyright 1997, 1998 Free Software Foundation, Inc.
Copying and distribution of this file, with or without modification, are
permitted provided the copyright notice and this notice are preserved.
@end smallexample

Of course, you should substitute the proper years and copyright holder.

@node Tags
@section Tags Tables
Eli Zaretskii's avatar
Eli Zaretskii committed
@cindex tags and tag tables
Glenn Morris's avatar
Glenn Morris committed
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

  A @dfn{tags table} is a description of how a multi-file program is
broken up into files.  It lists the names of the component files and the
names and positions of the functions (or other named subunits) in each
file.  Grouping the related files makes it possible to search or replace
through all the files with one command.  Recording the function names
and positions makes possible the @kbd{M-.} command which finds the
definition of a function by looking up which of the files it is in.

  Tags tables are stored in files called @dfn{tags table files}.  The
conventional name for a tags table file is @file{TAGS}.

  Each entry in the tags table records the name of one tag, the name of the
file that the tag is defined in (implicitly), and the position in that
file of the tag's definition.  When a file parsed by @code{etags} is
generated from a different source file, like a C file generated from a
Cweb source file, the tags of the parsed file reference the source

  Just what names from the described files are recorded in the tags table
depends on the programming language of the described file.  They
normally include all file names, functions and subroutines, and may
also include global variables, data types, and anything else
convenient.  Each name recorded is called a @dfn{tag}.

@cindex C++ class browser, tags
@cindex tags, C++
@cindex class browser, C++
@cindex Ebrowse
  See also the Ebrowse facility, which is tailored for C++.
@xref{Top,, Ebrowse, ebrowse, Ebrowse User's Manual}.

* Tag Syntax::		Tag syntax for various types of code and text files.
* Create Tags Table::	Creating a tags table with @code{etags}.
* Etags Regexps::       Create arbitrary tags using regular expressions.
* Select Tags Table::	How to visit a tags table.
* Find Tag::		Commands to find the definition of a specific tag.
* Tags Search::		Using a tags table for searching and replacing.
* List Tags::		Listing and finding tags defined in a file.
@end menu

@node Tag Syntax
@subsection Source File Tag Syntax

  Here is how tag syntax is defined for the most popular languages:

@itemize @bullet
In C code, any C function or typedef is a tag, and so are definitions of
@code{struct}, @code{union} and @code{enum}.
@code{#define} macro definitions, @code{#undef} and @code{enum}
constants are also
tags, unless you specify @samp{--no-defines} when making the tags table.
Similarly, global variables are tags, unless you specify
@samp{--no-globals}, and so are struct members, unless you specify
@samp{--no-members}.  Use of @samp{--no-globals}, @samp{--no-defines}
and @samp{--no-members} can make the tags table file much smaller.

You can tag function declarations and external variables in addition
to function definitions by giving the @samp{--declarations} option to

In C++ code, in addition to all the tag constructs of C code, member
functions are also recognized; member variables are also recognized,
unless you use the @samp{--no-members} option.  Tags for variables and
functions in classes are named @samp{@var{class}::@var{variable}} and
@samp{@var{class}::@var{function}}.  @code{operator} definitions have
tag names like @samp{operator+}.

In Java code, tags include all the constructs recognized in C++, plus
the @code{interface}, @code{extends} and @code{implements} constructs.
Tags for variables and functions in classes are named
@samp{@var{class}.@var{variable}} and @samp{@var{class}.@var{function}}.

In La@TeX{} text, the argument of any of the commands @code{\chapter},
@code{\section}, @code{\subsection}, @code{\subsubsection},
@code{\eqno}, @code{\label}, @code{\ref}, @code{\cite},
@code{\bibitem}, @code{\part}, @code{\appendix}, @code{\entry},
@code{\index}, @code{\def}, @code{\newcommand}, @code{\renewcommand},
@code{\newenvironment} or @code{\renewenvironment} is a tag.@refill

Other commands can make tags as well, if you specify them in the
environment variable @env{TEXTAGS} before invoking @code{etags}.  The
value of this environment variable should be a colon-separated list of
command names.  For example,

export TEXTAGS
@end example

specifies (using Bourne shell syntax) that the commands
@samp{\mycommand} and @samp{\myothercommand} also define tags.

In Lisp code, any function defined with @code{defun}, any variable
defined with @code{defvar} or @code{defconst}, and in general the first
argument of any expression that starts with @samp{(def} in column zero is
a tag.

In Scheme code, tags include anything defined with @code{def} or with a
construct whose name starts with @samp{def}.  They also include variables
set with @code{set!} at top level in the file.
@end itemize

  Several other languages are also supported:

@itemize @bullet

In Ada code, functions, procedures, packages, tasks and types are
tags.  Use the @samp{--packages-only} option to create tags for
packages only.

In Ada, the same name can be used for different kinds of entity
(e.g.@:, for a procedure and for a function).  Also, for things like
packages, procedures and functions, there is the spec (i.e.@: the
interface) and the body (i.e.@: the implementation).  To make it
easier to pick the definition you want, Ada tag name have suffixes
indicating the type of entity:

@table @samp
@item /b
package body.
@item /f
@item /k
@item /p
@item /s
package spec.
@item /t
@end table

  Thus, @kbd{M-x find-tag @key{RET} bidule/b @key{RET}} will go
directly to the body of the package @code{bidule}, while @kbd{M-x
find-tag @key{RET} bidule @key{RET}} will just search for any tag

In assembler code, labels appearing at the beginning of a line,
followed by a colon, are tags.

In Bison or Yacc input files, each rule defines as a tag the nonterminal
it constructs.  The portions of the file that contain C code are parsed
as C code.

In Cobol code, tags are paragraph names; that is, any word starting in
column 8 and followed by a period.

In Erlang code, the tags are the functions, records and macros defined
in the file.

In Fortran code, functions, subroutines and block data are tags.

In HTML input files, the tags are the @code{title} and the @code{h1},
@code{h2}, @code{h3} headers.  Also, tags are @code{name=} in anchors
and all occurrences of @code{id=}.

In Lua input files, all functions are tags.

In makefiles, targets are tags; additionally, variables are tags
unless you specify @samp{--no-globals}.

In Objective C code, tags include Objective C definitions for classes,
class categories, methods and protocols.  Tags for variables and
functions in classes are named @samp{@var{class}::@var{variable}} and

In Pascal code, the tags are the functions and procedures defined in
the file.

In Perl code, the tags are the packages, subroutines and variables
defined by the @code{package}, @code{sub}, @code{my} and @code{local}
keywords.  Use @samp{--globals} if you want to tag global variables.
Tags for subroutines are named @samp{@var{package}::@var{sub}}.  The
name for subroutines defined in the default package is

In PHP code, tags are functions, classes and defines.  Vars are tags
too, unless you use the @samp{--no-members} option.

In PostScript code, the tags are the functions.

In Prolog code, tags are predicates and rules at the beginning of

In Python code, @code{def} or @code{class} at the beginning of a line
generate a tag.
@end itemize

  You can also generate tags based on regexp matching (@pxref{Etags
Regexps}) to handle other formats and languages.

@node Create Tags Table
@subsection Creating Tags Tables
@cindex @code{etags} program

  The @code{etags} program is used to create a tags table file.  It knows
the syntax of several languages, as described in
the previous section.
@end iftex
@ref{Tag Syntax}.
@end ifnottex
Here is how to run @code{etags}:

etags @var{inputfiles}@dots{}
@end example

The @code{etags} program reads the specified files, and writes a tags
376 377 378 379
table named @file{TAGS} in the current working directory.  You can
optionally specify a different file name for the tags table by using the
@samp{--output=@var{file}} option; specifying @file{-} as a file name
prints the tags table to standard output.
Glenn Morris's avatar
Glenn Morris committed
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

  If the specified files don't exist, @code{etags} looks for
compressed versions of them and uncompresses them to read them.  Under
MS-DOS, @code{etags} also looks for file names like @file{mycode.cgz}
if it is given @samp{mycode.c} on the command line and @file{mycode.c}
does not exist.

  @code{etags} recognizes the language used in an input file based on
its file name and contents.  You can specify the language with the
@samp{--language=@var{name}} option, described below.

  If the tags table data become outdated due to changes in the files
described in the table, the way to update the tags table is the same
way it was made in the first place.  If the tags table fails to record
a tag, or records it for the wrong file, then Emacs cannot possibly
find its definition until you update the tags table.  However, if the
position recorded in the tags table becomes a little bit wrong (due to
other editing), the worst consequence is a slight delay in finding the
tag.  Even if the stored position is very far wrong, Emacs will still
find the tag, after searching most of the file for it.  That delay is
hardly noticeable with today's computers.

   Thus, there is no need to update the tags table after each edit.
You should update a tags table when you define new tags that you want
to have listed, or when you move tag definitions from one file to
another, or when changes become substantial.

  One tags table can virtually include another.  Specify the included
tags file name with the @samp{--include=@var{file}} option when
creating the file that is to include it.  The latter file then acts as
if it covered all the source files specified in the included file, as
well as the files it directly contains.

  If you specify the source files with relative file names when you run
@code{etags}, the tags file will contain file names relative to the
directory where the tags file was initially written.  This way, you can
move an entire directory tree containing both the tags file and the
source files, and the tags file will still refer correctly to the source
418 419
files.  If the tags file is @file{-} or is in the @file{/dev} directory,
however, the file names are 
Glenn Morris's avatar
Glenn Morris committed
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
made relative to the current working directory.  This is useful, for
example, when writing the tags to @file{/dev/stdout}.

  When using a relative file name, it should not be a symbolic link
pointing to a tags file in a different directory, because this would
generally render the file names invalid.

  If you specify absolute file names as arguments to @code{etags}, then
the tags file will contain absolute file names.  This way, the tags file
will still refer to the same files even if you move it, as long as the
source files remain in the same place.  Absolute file names start with
@samp{/}, or with @samp{@var{device}:/} on MS-DOS and MS-Windows.

  When you want to make a tags table from a great number of files, you
may have problems listing them on the command line, because some systems
have a limit on its length.  The simplest way to circumvent this limit
is to tell @code{etags} to read the file names from its standard input,
by typing a dash in place of the file names, like this:

find . -name "*.[chCH]" -print | etags -
@end smallexample

  Use the option @samp{--language=@var{name}} to specify the language
explicitly.  You can intermix these options with file names; each one
applies to the file names that follow it.  Specify
@samp{--language=auto} to tell @code{etags} to resume guessing the
language from the file names and file contents.  Specify
@samp{--language=none} to turn off language-specific processing
entirely; then @code{etags} recognizes tags by regexp matching alone
(@pxref{Etags Regexps}).

  The option @samp{--parse-stdin=@var{file}} is mostly useful when
calling @code{etags} from programs.  It can be used (only once) in
place of a file name on the command line.  @code{Etags} will read from
standard input and mark the produced tags as belonging to the file

  @samp{etags --help} outputs the list of the languages @code{etags}
knows, and the file name rules for guessing the language.  It also prints
a list of all the available @code{etags} options, together with a short
explanation.  If followed by one or more @samp{--language=@var{lang}}
options, it outputs detailed information about how tags are generated for

@node Etags Regexps
@subsection Etags Regexps

  The @samp{--regex} option provides a general way of recognizing tags
based on regexp matching.  You can freely intermix this option with
file names, and each one applies to the source files that follow it.
If you specify multiple @samp{--regex} options, all of them are used
in parallel.  The syntax is:

@end smallexample

  The essential part of the option value is @var{tagregexp}, the
regexp for matching tags.  It is always used anchored, that is, it
only matches at the beginning of a line.  If you want to allow
indented tags, use a regexp that matches initial whitespace; start it
with @samp{[ \t]*}.

  In these regular expressions, @samp{\} quotes the next character, and
all the GCC character escape sequences are supported (@samp{\a} for
bell, @samp{\b} for back space, @samp{\d} for delete, @samp{\e} for
escape, @samp{\f} for formfeed, @samp{\n} for newline, @samp{\r} for
carriage return, @samp{\t} for tab, and @samp{\v} for vertical tab).

  Ideally, @var{tagregexp} should not match more characters than are
needed to recognize what you want to tag.  If the syntax requires you
to write @var{tagregexp} so it matches more characters beyond the tag
itself, you should add a @var{nameregexp}, to pick out just the tag.
This will enable Emacs to find tags more accurately and to do
completion on tag names more reliably.  You can find some examples

  The @var{modifiers} are a sequence of zero or more characters that
modify the way @code{etags} does the matching.  A regexp with no
modifiers is applied sequentially to each line of the input file, in a
case-sensitive way.  The modifiers and their meanings are:

@table @samp
@item i
Ignore case when matching this regexp.
@item m
Match this regular expression against the whole file, so that
multi-line matches are possible.
@item s
Match this regular expression against the whole file, and allow
@samp{.} in @var{tagregexp} to match newlines.
@end table

  The @samp{-R} option cancels all the regexps defined by preceding
@samp{--regex} options.  It too applies to the file names following
it.  Here's an example:

etags --regex=/@var{reg1}/i voo.doo --regex=/@var{reg2}/m \
    bar.ber -R --lang=lisp
@end smallexample

Here @code{etags} chooses the parsing language for @file{voo.doo} and
@file{bar.ber} according to their contents.  @code{etags} also uses
@var{reg1} to recognize additional tags in @file{voo.doo}, and both
@var{reg1} and @var{reg2} to recognize additional tags in
@file{bar.ber}.  @var{reg1} is checked against each line of
@file{voo.doo} and @file{bar.ber}, in a case-insensitive way, while
@var{reg2} is checked against the whole @file{bar.ber} file,
permitting multi-line matches, in a case-sensitive way.  @code{etags}
uses only the Lisp tags rules, with no user-specified regexp matching,
to recognize tags in @file{}.

  You can restrict a @samp{--regex} option to match only files of a
given language by using the optional prefix @var{@{language@}}.
(@samp{etags --help} prints the list of languages recognized by
@code{etags}.)  This is particularly useful when storing many
predefined regular expressions for @code{etags} in a file.  The
following example tags the @code{DEFVAR} macros in the Emacs source
files, for the C language only:

--regex='@{c@}/[ \t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/'
@end smallexample

When you have complex regular expressions, you can store the list of
them in a file.  The following option syntax instructs @code{etags} to
read two files of regular expressions.  The regular expressions
contained in the second file are matched without regard to case.

--regex=@@@var{case-sensitive-file} --ignore-case-regex=@@@var{ignore-case-file}
@end smallexample

A regex file for @code{etags} contains one regular expression per
line.  Empty lines, and lines beginning with space or tab are ignored.
When the first character in a line is @samp{@@}, @code{etags} assumes
that the rest of the line is the name of another file of regular
expressions; thus, one such file can include another file.  All the
other lines are taken to be regular expressions.  If the first
non-whitespace text on the line is @samp{--}, that line is a comment.

  For example, we can create a file called @samp{emacs.tags} with the
following contents:

        -- This is for GNU Emacs C source files
@{c@}/[ \t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/\1/
@end smallexample

and then use it like this:

etags --regex=@@emacs.tags *.[ch] */*.[ch]
@end smallexample

  Here are some more examples.  The regexps are quoted to protect them
from shell interpretation.

@itemize @bullet

Tag Octave files:

etags --language=none \
      --regex='/[ \t]*function.*=[ \t]*\([^ \t]*\)[ \t]*(/\1/' \
      --regex='/###key \(.*\)/\1/' \
      --regex='/[ \t]*global[ \t].*/' \
@end smallexample

Note that tags are not generated for scripts, so that you have to add
a line by yourself of the form @samp{###key @var{scriptname}} if you
want to jump to it.

Tag Tcl files:

etags --language=none --regex='/proc[ \t]+\([^ \t]+\)/\1/' *.tcl
@end smallexample

Tag VHDL files:

etags --language=none \
  --regex='/[ \t]*\(ARCHITECTURE\|CONFIGURATION\) +[^ ]* +OF/' \
  \( BODY\)?\|PROCEDURE\|PROCESS\|TYPE\)[ \t]+\([^ \t(]+\)/\3/'
@end smallexample
@end itemize

@node Select Tags Table
@subsection Selecting a Tags Table

@vindex tags-file-name
@findex visit-tags-table
  Emacs has at any time one @dfn{selected} tags table, and all the
commands for working with tags tables use the selected one.  To select
a tags table, type @kbd{M-x visit-tags-table}, which reads the tags
table file name as an argument, with @file{TAGS} in the default
directory as the default.

  Emacs does not actually read in the tags table contents until you
try to use them; all @code{visit-tags-table} does is store the file
name in the variable @code{tags-file-name}, and setting the variable
yourself is just as good.  The variable's initial value is @code{nil};
that value tells all the commands for working with tags tables that
they must ask for a tags table file name to use.

  Using @code{visit-tags-table} when a tags table is already loaded
gives you a choice: you can add the new tags table to the current list
of tags tables, or start a new list.  The tags commands use all the tags
tables in the current list.  If you start a new list, the new tags table
is used @emph{instead} of others.  If you add the new table to the
current list, it is used @emph{as well as} the others.

@vindex tags-table-list
  You can specify a precise list of tags tables by setting the variable
@code{tags-table-list} to a list of strings, like this:

@c keep this on two lines for formatting in smallbook
(setq tags-table-list
      '("~/emacs" "/usr/local/lib/emacs/src"))
@end group
@end example

This tells the tags commands to look at the @file{TAGS} files in your
@file{~/emacs} directory and in the @file{/usr/local/lib/emacs/src}
directory.  The order depends on which file you are in and which tags
table mentions that file, as explained above.

  Do not set both @code{tags-file-name} and @code{tags-table-list}.

@node Find Tag
@subsection Finding a Tag

  The most important thing that a tags table enables you to do is to find
the definition of a specific tag.

@table @kbd
@item M-.@: @var{tag} @key{RET}
Find first definition of @var{tag} (@code{find-tag}).
@item C-u M-.
Find next alternate definition of last tag specified.
@item C-u - M-.
Go back to previous tag found.
@item C-M-. @var{pattern} @key{RET}
Find a tag whose name matches @var{pattern} (@code{find-tag-regexp}).
@item C-u C-M-.
Find the next tag whose name matches the last pattern used.
@item C-x 4 .@: @var{tag} @key{RET}
Find first definition of @var{tag}, but display it in another window
@item C-x 5 .@: @var{tag} @key{RET}
Find first definition of @var{tag}, and create a new frame to select the
buffer (@code{find-tag-other-frame}).
@item M-*
Pop back to where you previously invoked @kbd{M-.} and friends.
@end table

@kindex M-.
@findex find-tag
  @kbd{M-.}@: (@code{find-tag}) is the command to find the definition of
a specified tag.  It searches through the tags table for that tag, as a
string, and then uses the tags table info to determine the file that the
definition is in and the approximate character position in the file of
the definition.  Then @code{find-tag} visits that file, moves point to
the approximate character position, and searches ever-increasing
distances away to find the tag definition.

  If an empty argument is given (just type @key{RET}), the balanced
expression in the buffer before or around point is used as the
@var{tag} argument.  @xref{Expressions}.

  You don't need to give @kbd{M-.} the full name of the tag; a part
will do.  This is because @kbd{M-.} finds tags in the table which
contain @var{tag} as a substring.  However, it prefers an exact match
to a substring match.  To find other tags that match the same
substring, give @code{find-tag} a numeric argument, as in @kbd{C-u
M-.}; this does not read a tag name, but continues searching the tags
table's text for another tag containing the same substring last used.
If you have a real @key{META} key, @kbd{M-0 M-.}@: is an easier
alternative to @kbd{C-u M-.}.

@kindex C-x 4 .
@findex find-tag-other-window
@kindex C-x 5 .
@findex find-tag-other-frame
  Like most commands that can switch buffers, @code{find-tag} has a
variant that displays the new buffer in another window, and one that
makes a new frame for it.  The former is @w{@kbd{C-x 4 .}}, which invokes
the command @code{find-tag-other-window}.  The latter is @w{@kbd{C-x 5 .}},
which invokes @code{find-tag-other-frame}.

  To move back to places you've found tags recently, use @kbd{C-u -
M-.}; more generally, @kbd{M-.} with a negative numeric argument.  This
command can take you to another buffer.  @w{@kbd{C-x 4 .}} with a negative
argument finds the previous tag location in another window.

@kindex M-*
@findex pop-tag-mark
@vindex find-tag-marker-ring-length
  As well as going back to places you've found tags recently, you can go
back to places @emph{from where} you found them.  Use @kbd{M-*}, which
invokes the command @code{pop-tag-mark}, for this.  Typically you would
find and study the definition of something with @kbd{M-.} and then
return to where you were with @kbd{M-*}.

  Both @kbd{C-u - M-.} and @kbd{M-*} allow you to retrace your steps to
a depth determined by the variable @code{find-tag-marker-ring-length}.

@findex find-tag-regexp
@kindex C-M-.
  The command @kbd{C-M-.} (@code{find-tag-regexp}) visits the tags that
match a specified regular expression.  It is just like @kbd{M-.} except
that it does regexp matching instead of substring matching.

@node Tags Search
@subsection Searching and Replacing with Tags Tables
@cindex search and replace in multiple files
@cindex multiple-file search and replace

  The commands in this section visit and search all the files listed
in the selected tags table, one by one.  For these commands, the tags
table serves only to specify a sequence of files to search.  These
commands scan the list of tags tables starting with the first tags
table (if any) that describes the current file, proceed from there to
the end of the list, and then scan from the beginning of the list
until they have covered all the tables in the list.

@table @kbd
@item M-x tags-search @key{RET} @var{regexp} @key{RET}
Search for @var{regexp} through the files in the selected tags
@item M-x tags-query-replace @key{RET} @var{regexp} @key{RET} @var{replacement} @key{RET}
Perform a @code{query-replace-regexp} on each file in the selected tags table.
@item M-,
Restart one of the commands above, from the current location of point
@end table

@findex tags-search
  @kbd{M-x tags-search} reads a regexp using the minibuffer, then
searches for matches in all the files in the selected tags table, one
file at a time.  It displays the name of the file being searched so you
can follow its progress.  As soon as it finds an occurrence,
@code{tags-search} returns.

@kindex M-,
@findex tags-loop-continue
  Having found one match, you probably want to find all the rest.  To find
one more match, type @kbd{M-,} (@code{tags-loop-continue}) to resume the
@code{tags-search}.  This searches the rest of the current buffer, followed
by the remaining files of the tags table.@refill

@findex tags-query-replace
  @kbd{M-x tags-query-replace} performs a single
@code{query-replace-regexp} through all the files in the tags table.  It
reads a regexp to search for and a string to replace with, just like
ordinary @kbd{M-x query-replace-regexp}.  It searches much like @kbd{M-x
tags-search}, but repeatedly, processing matches according to your
input.  @xref{Replace}, for more information on query replace.

@vindex tags-case-fold-search
@cindex case-sensitivity and tags search
  You can control the case-sensitivity of tags search commands by
customizing the value of the variable @code{tags-case-fold-search}.  The
default is to use the same setting as the value of
@code{case-fold-search} (@pxref{Search Case}).

  It is possible to get through all the files in the tags table with a
single invocation of @kbd{M-x tags-query-replace}.  But often it is
useful to exit temporarily, which you can do with any input event that
805 806 807 808
has no special query replace meaning.  You can resume the query
replace subsequently by typing @kbd{M-,}; this command resumes the
last tags search or replace command that you did.  For instance, to
skip the rest of the current file, you can type @kbd{M-> M-,}.
Glenn Morris's avatar
Glenn Morris committed
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873

  The commands in this section carry out much broader searches than the
@code{find-tag} family.  The @code{find-tag} commands search only for
definitions of tags that match your substring or regexp.  The commands
@code{tags-search} and @code{tags-query-replace} find every occurrence
of the regexp, as ordinary search commands and replace commands do in
the current buffer.

  These commands create buffers only temporarily for the files that they
have to search (those which are not already visited in Emacs buffers).
Buffers in which no match is found are quickly killed; the others
continue to exist.

  It may have struck you that @code{tags-search} is a lot like
@code{grep}.  You can also run @code{grep} itself as an inferior of
Emacs and have Emacs show you the matching lines one by one.
@xref{Grep Searching}.

@node List Tags
@subsection Tags Table Inquiries

@table @kbd
@item M-x list-tags @key{RET} @var{file} @key{RET}
Display a list of the tags defined in the program file @var{file}.
@item M-x tags-apropos @key{RET} @var{regexp} @key{RET}
Display a list of all tags matching @var{regexp}.
@end table

@findex list-tags
  @kbd{M-x list-tags} reads the name of one of the files described by
the selected tags table, and displays a list of all the tags defined in
that file.  The ``file name'' argument is really just a string to
compare against the file names recorded in the tags table; it is read as
a string rather than as a file name.  Therefore, completion and
defaulting are not available, and you must enter the file name the same
way it appears in the tags table.  Do not include a directory as part of
the file name unless the file name recorded in the tags table includes a

@findex tags-apropos
@vindex tags-apropos-verbose
  @kbd{M-x tags-apropos} is like @code{apropos} for tags
(@pxref{Apropos}).  It finds all the tags in the selected tags table
whose entries match @var{regexp}, and displays them.  If the variable
@code{tags-apropos-verbose} is non-@code{nil}, it displays the names
of the tags files together with the tag names.

@vindex tags-tag-face
@vindex tags-apropos-additional-actions
  You can customize the appearance of the output by setting the
variable @code{tags-tag-face} to a face.  You can display additional
output with @kbd{M-x tags-apropos} by customizing the variable
@code{tags-apropos-additional-actions}---see its documentation for

  You can also use the collection of tag names to complete a symbol
name in the buffer.  @xref{Symbol Completion}.

@include emerge-xtra.texi
@end ifnottex

   arch-tag: b9d83dfb-82ea-4ff6-bab5-05a3617091fb
@end ignore