search.c 38 KB
Newer Older
Jim Blandy's avatar
Jim Blandy committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* String search routines for GNU Emacs.
   Copyright (C) 1985, 1986, 1987, 1992 Free Software Foundation, Inc.

This file is part of GNU Emacs.

GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */


#include "config.h"
#include "lisp.h"
#include "syntax.h"
#include "buffer.h"
#include "commands.h"
Jim Blandy's avatar
Jim Blandy committed
26

Jim Blandy's avatar
Jim Blandy committed
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <sys/types.h>
#include "regex.h"

#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))

/* We compile regexps into this buffer and then use it for searching. */

struct re_pattern_buffer searchbuf;

char search_fastmap[0400];

/* Last regexp we compiled */

Lisp_Object last_regexp;

Jim Blandy's avatar
Jim Blandy committed
43 44 45 46 47 48 49 50
/* Every call to re_match, etc., must pass &search_regs as the regs
   argument unless you can show it is unnecessary (i.e., if re_match
   is certainly going to be called again before region-around-match
   can be called).

   Since the registers are now dynamically allocated, we need to make
   sure not to refer to the Nth register before checking that it has
   been allocated.  */
Jim Blandy's avatar
Jim Blandy committed
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

static struct re_registers search_regs;

/* Nonzero if search_regs are indices in a string; 0 if in a buffer.  */

static int search_regs_from_string;

/* error condition signalled when regexp compile_pattern fails */

Lisp_Object Qinvalid_regexp;

static void
matcher_overflow ()
{
  error ("Stack overflow in regexp matcher");
}

#ifdef __STDC__
#define CONST const
#else
#define CONST
#endif

/* Compile a regexp and signal a Lisp error if anything goes wrong.  */

compile_pattern (pattern, bufp, translate)
     Lisp_Object pattern;
     struct re_pattern_buffer *bufp;
     char *translate;
{
  CONST char *val;
  Lisp_Object dummy;

  if (EQ (pattern, last_regexp)
      && translate == bufp->translate)
    return;
  last_regexp = Qnil;
  bufp->translate = translate;
  val = re_compile_pattern ((char *) XSTRING (pattern)->data,
			    XSTRING (pattern)->size,
			    bufp);
  if (val)
    {
      dummy = build_string (val);
      while (1)
	Fsignal (Qinvalid_regexp, Fcons (dummy, Qnil));
    }
  last_regexp = pattern;
  return;
}

/* Error condition used for failing searches */
Lisp_Object Qsearch_failed;

Lisp_Object
signal_failure (arg)
     Lisp_Object arg;
{
  Fsignal (Qsearch_failed, Fcons (arg, Qnil));
  return Qnil;
}

DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
  "Return t if text after point matches regular expression PAT.")
  (string)
     Lisp_Object string;
{
  Lisp_Object val;
  unsigned char *p1, *p2;
  int s1, s2;
  register int i;

  CHECK_STRING (string, 0);
  compile_pattern (string, &searchbuf,
		   !NILP (current_buffer->case_fold_search) ? DOWNCASE_TABLE : 0);

  immediate_quit = 1;
  QUIT;			/* Do a pending quit right away, to avoid paradoxical behavior */

  /* Get pointers and sizes of the two strings
     that make up the visible portion of the buffer. */

  p1 = BEGV_ADDR;
  s1 = GPT - BEGV;
  p2 = GAP_END_ADDR;
  s2 = ZV - GPT;
  if (s1 < 0)
    {
      p2 = p1;
      s2 = ZV - BEGV;
      s1 = 0;
    }
  if (s2 < 0)
    {
      s1 = ZV - BEGV;
      s2 = 0;
    }
  
  i = re_match_2 (&searchbuf, (char *) p1, s1, (char *) p2, s2,
		  point - BEGV, &search_regs,
		  ZV - BEGV);
  if (i == -2)
    matcher_overflow ();

  val = (0 <= i ? Qt : Qnil);
Jim Blandy's avatar
Jim Blandy committed
156
  for (i = 0; i < search_regs.num_regs; i++)
Jim Blandy's avatar
Jim Blandy committed
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    if (search_regs.start[i] >= 0)
      {
	search_regs.start[i] += BEGV;
	search_regs.end[i] += BEGV;
      }
  search_regs_from_string = 0;
  immediate_quit = 0;
  return val;
}

DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
  "Return index of start of first match for REGEXP in STRING, or nil.\n\
If third arg START is non-nil, start search at that index in STRING.\n\
For index of first char beyond the match, do (match-end 0).\n\
`match-end' and `match-beginning' also give indices of substrings\n\
matched by parenthesis constructs in the pattern.")
  (regexp, string, start)
     Lisp_Object regexp, string, start;
{
  int val;
  int s;

  CHECK_STRING (regexp, 0);
  CHECK_STRING (string, 1);

  if (NILP (start))
    s = 0;
  else
    {
      int len = XSTRING (string)->size;

      CHECK_NUMBER (start, 2);
      s = XINT (start);
      if (s < 0 && -s <= len)
	s = len - s;
      else if (0 > s || s > len)
	args_out_of_range (string, start);
    }

  compile_pattern (regexp, &searchbuf,
		   !NILP (current_buffer->case_fold_search) ? DOWNCASE_TABLE : 0);
  immediate_quit = 1;
  val = re_search (&searchbuf, (char *) XSTRING (string)->data,
		   XSTRING (string)->size, s, XSTRING (string)->size - s,
		   &search_regs);
  immediate_quit = 0;
  search_regs_from_string = 1;
  if (val == -2)
    matcher_overflow ();
  if (val < 0) return Qnil;
  return make_number (val);
}

scan_buffer (target, pos, cnt, shortage)
     int *shortage, pos;
     register int cnt, target;
{
  int lim = ((cnt > 0) ? ZV - 1 : BEGV);
  int direction = ((cnt > 0) ? 1 : -1);
  register int lim0;
  unsigned char *base;
  register unsigned char *cursor, *limit;

  if (shortage != 0)
    *shortage = 0;

  immediate_quit = 1;

  if (cnt > 0)
    while (pos != lim + 1)
      {
	lim0 =  BUFFER_CEILING_OF (pos);
	lim0 = min (lim, lim0);
	limit = &FETCH_CHAR (lim0) + 1;
	base = (cursor = &FETCH_CHAR (pos));
	while (1)
	  {
	    while (*cursor != target && ++cursor != limit)
	      ;
	    if (cursor != limit)
	      {
		if (--cnt == 0)
		  {
		    immediate_quit = 0;
		    return (pos + cursor - base + 1);
		  }
		else
		  if (++cursor == limit)
		    break;
	      }
	    else
	      break;
	  }
	pos += cursor - base;
      }
  else
    {
      pos--;			/* first character we scan */
      while (pos > lim - 1)
	{			/* we WILL scan under pos */
	  lim0 =  BUFFER_FLOOR_OF (pos);
	  lim0 = max (lim, lim0);
	  limit = &FETCH_CHAR (lim0) - 1;
	  base = (cursor = &FETCH_CHAR (pos));
	  cursor++;
	  while (1)
	    {
	      while (--cursor != limit && *cursor != target)
		;
	      if (cursor != limit)
		{
		  if (++cnt == 0)
		    {
		      immediate_quit = 0;
		      return (pos + cursor - base + 1);
		    }
		}
	      else
		break;
	    }
	  pos += cursor - base;
	}
    }
  immediate_quit = 0;
  if (shortage != 0)
    *shortage = cnt * direction;
  return (pos + ((direction == 1 ? 0 : 1)));
}

int
find_next_newline (from, cnt)
     register int from, cnt;
{
  return (scan_buffer ('\n', from, cnt, (int *) 0));
}

DEFUN ("skip-chars-forward", Fskip_chars_forward, Sskip_chars_forward, 1, 2, 0,
  "Move point forward, stopping before a char not in CHARS, or at position LIM.\n\
CHARS is like the inside of a `[...]' in a regular expression\n\
except that `]' is never special and `\\' quotes `^', `-' or `\\'.\n\
Thus, with arg \"a-zA-Z\", this skips letters stopping before first nonletter.\n\
With arg \"^a-zA-Z\", skips nonletters stopping before first letter.")
  (string, lim)
     Lisp_Object string, lim;
{
  skip_chars (1, string, lim);
  return Qnil;
}

DEFUN ("skip-chars-backward", Fskip_chars_backward, Sskip_chars_backward, 1, 2, 0,
  "Move point backward, stopping after a char not in CHARS, or at position LIM.\n\
See `skip-chars-forward' for details.")
  (string, lim)
     Lisp_Object string, lim;
{
  skip_chars (0, string, lim);
  return Qnil;
}

skip_chars (forwardp, string, lim)
     int forwardp;
     Lisp_Object string, lim;
{
  register unsigned char *p, *pend;
  register unsigned char c;
  unsigned char fastmap[0400];
  int negate = 0;
  register int i;

  CHECK_STRING (string, 0);

  if (NILP (lim))
    XSET (lim, Lisp_Int, forwardp ? ZV : BEGV);
  else
    CHECK_NUMBER_COERCE_MARKER (lim, 1);

#if 0				/* This breaks some things... jla. */
  /* In any case, don't allow scan outside bounds of buffer.  */
  if (XFASTINT (lim) > ZV)
    XFASTINT (lim) = ZV;
  if (XFASTINT (lim) < BEGV)
    XFASTINT (lim) = BEGV;
#endif

  p = XSTRING (string)->data;
  pend = p + XSTRING (string)->size;
  bzero (fastmap, sizeof fastmap);

  if (p != pend && *p == '^')
    {
      negate = 1; p++;
    }

  /* Find the characters specified and set their elements of fastmap.  */

  while (p != pend)
    {
      c = *p++;
      if (c == '\\')
        {
	  if (p == pend) break;
	  c = *p++;
	}
      if (p != pend && *p == '-')
	{
	  p++;
	  if (p == pend) break;
	  while (c <= *p)
	    {
	      fastmap[c] = 1;
	      c++;
	    }
	  p++;
	}
      else
	fastmap[c] = 1;
    }

  /* If ^ was the first character, complement the fastmap. */

  if (negate)
    for (i = 0; i < sizeof fastmap; i++)
      fastmap[i] ^= 1;

  immediate_quit = 1;
  if (forwardp)
    {
      while (point < XINT (lim) && fastmap[FETCH_CHAR (point)])
	SET_PT (point + 1);
    }
  else
    {
      while (point > XINT (lim) && fastmap[FETCH_CHAR (point - 1)])
	SET_PT (point - 1);
    }
  immediate_quit = 0;
}

/* Subroutines of Lisp buffer search functions. */

static Lisp_Object
search_command (string, bound, noerror, count, direction, RE)
     Lisp_Object string, bound, noerror, count;
     int direction;
     int RE;
{
  register int np;
  int lim;
  int n = direction;

  if (!NILP (count))
    {
      CHECK_NUMBER (count, 3);
      n *= XINT (count);
    }

  CHECK_STRING (string, 0);
  if (NILP (bound))
    lim = n > 0 ? ZV : BEGV;
  else
    {
      CHECK_NUMBER_COERCE_MARKER (bound, 1);
      lim = XINT (bound);
      if (n > 0 ? lim < point : lim > point)
	error ("Invalid search bound (wrong side of point)");
      if (lim > ZV)
	lim = ZV;
      if (lim < BEGV)
	lim = BEGV;
    }

  np = search_buffer (string, point, lim, n, RE,
		      (!NILP (current_buffer->case_fold_search)
		       ? XSTRING (current_buffer->case_canon_table)->data : 0),
		      (!NILP (current_buffer->case_fold_search)
		       ? XSTRING (current_buffer->case_eqv_table)->data : 0));
  if (np <= 0)
    {
      if (NILP (noerror))
	return signal_failure (string);
      if (!EQ (noerror, Qt))
	{
	  if (lim < BEGV || lim > ZV)
	    abort ();
	  SET_PT (lim);
	}
      return Qnil;
    }

  if (np < BEGV || np > ZV)
    abort ();

  SET_PT (np);

  return make_number (np);
}

/* search for the n'th occurrence of STRING in the current buffer,
   starting at position POS and stopping at position LIM,
   treating PAT as a literal string if RE is false or as
   a regular expression if RE is true.

   If N is positive, searching is forward and LIM must be greater than POS.
   If N is negative, searching is backward and LIM must be less than POS.

   Returns -x if only N-x occurrences found (x > 0),
   or else the position at the beginning of the Nth occurrence
   (if searching backward) or the end (if searching forward).  */

search_buffer (string, pos, lim, n, RE, trt, inverse_trt)
     Lisp_Object string;
     int pos;
     int lim;
     int n;
     int RE;
     register unsigned char *trt;
     register unsigned char *inverse_trt;
{
  int len = XSTRING (string)->size;
  unsigned char *base_pat = XSTRING (string)->data;
  register int *BM_tab;
  int *BM_tab_base;
  register int direction = ((n > 0) ? 1 : -1);
  register int dirlen;
  int infinity, limit, k, stride_for_teases;
  register unsigned char *pat, *cursor, *p_limit;  
  register int i, j;
  unsigned char *p1, *p2;
  int s1, s2;

  /* Null string is found at starting position.  */
  if (!len)
    return pos;

  if (RE)
    compile_pattern (string, &searchbuf, (char *) trt);
  
  if (RE			/* Here we detect whether the */
				/* generality of an RE search is */
				/* really needed. */
      /* first item is "exact match" */
Jim Blandy's avatar
Jim Blandy committed
498
      && *(searchbuf.buffer) == (char) RE_EXACTN_VALUE
Jim Blandy's avatar
Jim Blandy committed
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
      && searchbuf.buffer[1] + 2 == searchbuf.used) /*first is ONLY item */
    {
      RE = 0;			/* can do straight (non RE) search */
      pat = (base_pat = (unsigned char *) searchbuf.buffer + 2);
				/* trt already applied */
      len = searchbuf.used - 2;
    }
  else if (!RE)
    {
      pat = (unsigned char *) alloca (len);

      for (i = len; i--;)		/* Copy the pattern; apply trt */
	*pat++ = (((int) trt) ? trt [*base_pat++] : *base_pat++);
      pat -= len; base_pat = pat;
    }

  if (RE)
    {
      immediate_quit = 1;	/* Quit immediately if user types ^G,
				   because letting this function finish
				   can take too long. */
      QUIT;			/* Do a pending quit right away,
				   to avoid paradoxical behavior */
      /* Get pointers and sizes of the two strings
	 that make up the visible portion of the buffer. */

      p1 = BEGV_ADDR;
      s1 = GPT - BEGV;
      p2 = GAP_END_ADDR;
      s2 = ZV - GPT;
      if (s1 < 0)
	{
	  p2 = p1;
	  s2 = ZV - BEGV;
	  s1 = 0;
	}
      if (s2 < 0)
	{
	  s1 = ZV - BEGV;
	  s2 = 0;
	}
      while (n < 0)
	{
	  int val = re_search_2 (&searchbuf, (char *) p1, s1, (char *) p2, s2,
				 pos - BEGV, lim - pos, &search_regs,
				 /* Don't allow match past current point */
				 pos - BEGV);
	  if (val == -2)
	    matcher_overflow ();
	  if (val >= 0)
	    {
	      j = BEGV;
Jim Blandy's avatar
Jim Blandy committed
551
	      for (i = 0; i < search_regs.num_regs; i++)
Jim Blandy's avatar
Jim Blandy committed
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
		if (search_regs.start[i] >= 0)
		  {
		    search_regs.start[i] += j;
		    search_regs.end[i] += j;
		  }
	      search_regs_from_string = 0;
	      /* Set pos to the new position. */
	      pos = search_regs.start[0];
	    }
	  else
	    {
	      immediate_quit = 0;
	      return (n);
	    }
	  n++;
	}
      while (n > 0)
	{
	  int val = re_search_2 (&searchbuf, (char *) p1, s1, (char *) p2, s2,
				 pos - BEGV, lim - pos, &search_regs,
				 lim - BEGV);
	  if (val == -2)
	    matcher_overflow ();
	  if (val >= 0)
	    {
	      j = BEGV;
Jim Blandy's avatar
Jim Blandy committed
578
	      for (i = 0; i < search_regs.num_regs; i++)
Jim Blandy's avatar
Jim Blandy committed
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
		if (search_regs.start[i] >= 0)
		  {
		    search_regs.start[i] += j;
		    search_regs.end[i] += j;
		  }
	      search_regs_from_string = 0;
	      pos = search_regs.end[0];
	    }
	  else
	    {
	      immediate_quit = 0;
	      return (0 - n);
	    }
	  n--;
	}
      immediate_quit = 0;
      return (pos);
    }
  else				/* non-RE case */
    {
#ifdef C_ALLOCA
      int BM_tab_space[0400];
      BM_tab = &BM_tab_space[0];
#else
      BM_tab = (int *) alloca (0400 * sizeof (int));
#endif
      /* The general approach is that we are going to maintain that we know */
      /* the first (closest to the present position, in whatever direction */
      /* we're searching) character that could possibly be the last */
      /* (furthest from present position) character of a valid match.  We */
      /* advance the state of our knowledge by looking at that character */
      /* and seeing whether it indeed matches the last character of the */
      /* pattern.  If it does, we take a closer look.  If it does not, we */
      /* move our pointer (to putative last characters) as far as is */
      /* logically possible.  This amount of movement, which I call a */
      /* stride, will be the length of the pattern if the actual character */
      /* appears nowhere in the pattern, otherwise it will be the distance */
      /* from the last occurrence of that character to the end of the */
      /* pattern. */
      /* As a coding trick, an enormous stride is coded into the table for */
      /* characters that match the last character.  This allows use of only */
      /* a single test, a test for having gone past the end of the */
      /* permissible match region, to test for both possible matches (when */
      /* the stride goes past the end immediately) and failure to */
      /* match (where you get nudged past the end one stride at a time). */ 

      /* Here we make a "mickey mouse" BM table.  The stride of the search */
      /* is determined only by the last character of the putative match. */
      /* If that character does not match, we will stride the proper */
      /* distance to propose a match that superimposes it on the last */
      /* instance of a character that matches it (per trt), or misses */
      /* it entirely if there is none. */  

      dirlen = len * direction;
      infinity = dirlen - (lim + pos + len + len) * direction;
      if (direction < 0)
	pat = (base_pat += len - 1);
      BM_tab_base = BM_tab;
      BM_tab += 0400;
      j = dirlen;		/* to get it in a register */
      /* A character that does not appear in the pattern induces a */
      /* stride equal to the pattern length. */
      while (BM_tab_base != BM_tab)
	{
	  *--BM_tab = j;
	  *--BM_tab = j;
	  *--BM_tab = j;
	  *--BM_tab = j;
	}
      i = 0;
      while (i != infinity)
	{
	  j = pat[i]; i += direction;
	  if (i == dirlen) i = infinity;
	  if ((int) trt)
	    {
	      k = (j = trt[j]);
	      if (i == infinity)
		stride_for_teases = BM_tab[j];
	      BM_tab[j] = dirlen - i;
	      /* A translation table is accompanied by its inverse -- see */
	      /* comment following downcase_table for details */ 
	      while ((j = inverse_trt[j]) != k)
		BM_tab[j] = dirlen - i;
	    }
	  else
	    {
	      if (i == infinity)
		stride_for_teases = BM_tab[j];
	      BM_tab[j] = dirlen - i;
	    }
	  /* stride_for_teases tells how much to stride if we get a */
	  /* match on the far character but are subsequently */
	  /* disappointed, by recording what the stride would have been */
	  /* for that character if the last character had been */
	  /* different. */
	}
      infinity = dirlen - infinity;
      pos += dirlen - ((direction > 0) ? direction : 0);
      /* loop invariant - pos points at where last char (first char if reverse)
	 of pattern would align in a possible match.  */
      while (n != 0)
	{
	  if ((lim - pos - (direction > 0)) * direction < 0)
	    return (n * (0 - direction));
	  /* First we do the part we can by pointers (maybe nothing) */
	  QUIT;
	  pat = base_pat;
	  limit = pos - dirlen + direction;
	  limit = ((direction > 0)
		   ? BUFFER_CEILING_OF (limit)
		   : BUFFER_FLOOR_OF (limit));
	  /* LIMIT is now the last (not beyond-last!) value
	     POS can take on without hitting edge of buffer or the gap.  */
	  limit = ((direction > 0)
		   ? min (lim - 1, min (limit, pos + 20000))
		   : max (lim, max (limit, pos - 20000)));
	  if ((limit - pos) * direction > 20)
	    {
	      p_limit = &FETCH_CHAR (limit);
	      p2 = (cursor = &FETCH_CHAR (pos));
	      /* In this loop, pos + cursor - p2 is the surrogate for pos */
	      while (1)		/* use one cursor setting as long as i can */
		{
		  if (direction > 0) /* worth duplicating */
		    {
		      /* Use signed comparison if appropriate
			 to make cursor+infinity sure to be > p_limit.
			 Assuming that the buffer lies in a range of addresses
			 that are all "positive" (as ints) or all "negative",
			 either kind of comparison will work as long
			 as we don't step by infinity.  So pick the kind
			 that works when we do step by infinity.  */
		      if ((int) (p_limit + infinity) > (int) p_limit)
			while ((int) cursor <= (int) p_limit)
			  cursor += BM_tab[*cursor];
		      else
			while ((unsigned int) cursor <= (unsigned int) p_limit)
			  cursor += BM_tab[*cursor];
		    }
		  else
		    {
		      if ((int) (p_limit + infinity) < (int) p_limit)
			while ((int) cursor >= (int) p_limit)
			  cursor += BM_tab[*cursor];
		      else
			while ((unsigned int) cursor >= (unsigned int) p_limit)
			  cursor += BM_tab[*cursor];
		    }
/* If you are here, cursor is beyond the end of the searched region. */
 /* This can happen if you match on the far character of the pattern, */
 /* because the "stride" of that character is infinity, a number able */
 /* to throw you well beyond the end of the search.  It can also */
 /* happen if you fail to match within the permitted region and would */
 /* otherwise try a character beyond that region */
		  if ((cursor - p_limit) * direction <= len)
		    break;	/* a small overrun is genuine */
		  cursor -= infinity; /* large overrun = hit */
		  i = dirlen - direction;
		  if ((int) trt)
		    {
		      while ((i -= direction) + direction != 0)
			if (pat[i] != trt[*(cursor -= direction)])
			  break;
		    }
		  else
		    {
		      while ((i -= direction) + direction != 0)
			if (pat[i] != *(cursor -= direction))
			  break;
		    }
		  cursor += dirlen - i - direction;	/* fix cursor */
		  if (i + direction == 0)
		    {
		      cursor -= direction;
		      search_regs.start[0]
			= pos + cursor - p2 + ((direction > 0)
					       ? 1 - len : 0);
		      search_regs.end[0] = len + search_regs.start[0];
		      search_regs_from_string = 0;
		      if ((n -= direction) != 0)
			cursor += dirlen; /* to resume search */
		      else
			return ((direction > 0)
				? search_regs.end[0] : search_regs.start[0]);
		    }
		  else
		    cursor += stride_for_teases; /* <sigh> we lose -  */
		}
	      pos += cursor - p2;
	    }
	  else
	    /* Now we'll pick up a clump that has to be done the hard */
	    /* way because it covers a discontinuity */
	    {
	      limit = ((direction > 0)
		       ? BUFFER_CEILING_OF (pos - dirlen + 1)
		       : BUFFER_FLOOR_OF (pos - dirlen - 1));
	      limit = ((direction > 0)
		       ? min (limit + len, lim - 1)
		       : max (limit - len, lim));
	      /* LIMIT is now the last value POS can have
		 and still be valid for a possible match.  */
	      while (1)
		{
		  /* This loop can be coded for space rather than */
		  /* speed because it will usually run only once. */
		  /* (the reach is at most len + 21, and typically */
		  /* does not exceed len) */    
		  while ((limit - pos) * direction >= 0)
		    pos += BM_tab[FETCH_CHAR(pos)];
		  /* now run the same tests to distinguish going off the */
		  /* end, a match or a phoney match. */
		  if ((pos - limit) * direction <= len)
		    break;	/* ran off the end */
		  /* Found what might be a match.
		     Set POS back to last (first if reverse) char pos.  */
		  pos -= infinity;
		  i = dirlen - direction;
		  while ((i -= direction) + direction != 0)
		    {
		      pos -= direction;
		      if (pat[i] != (((int) trt)
				     ? trt[FETCH_CHAR(pos)]
				     : FETCH_CHAR (pos)))
			break;
		    }
		  /* Above loop has moved POS part or all the way
		     back to the first char pos (last char pos if reverse).
		     Set it once again at the last (first if reverse) char.  */
		  pos += dirlen - i- direction;
		  if (i + direction == 0)
		    {
		      pos -= direction;
		      search_regs.start[0]
			= pos + ((direction > 0) ? 1 - len : 0);
		      search_regs.end[0] = len + search_regs.start[0];
		      search_regs_from_string = 0;
		      if ((n -= direction) != 0)
			pos += dirlen; /* to resume search */
		      else
			return ((direction > 0)
				? search_regs.end[0] : search_regs.start[0]);
		    }
		  else
		    pos += stride_for_teases;
		}
	      }
	  /* We have done one clump.  Can we continue? */
	  if ((lim - pos) * direction < 0)
	    return ((0 - n) * direction);
	}
      return pos;
    }
}

/* Given a string of words separated by word delimiters,
  compute a regexp that matches those exact words
  separated by arbitrary punctuation.  */

static Lisp_Object
wordify (string)
     Lisp_Object string;
{
  register unsigned char *p, *o;
  register int i, len, punct_count = 0, word_count = 0;
  Lisp_Object val;

  CHECK_STRING (string, 0);
  p = XSTRING (string)->data;
  len = XSTRING (string)->size;

  for (i = 0; i < len; i++)
    if (SYNTAX (p[i]) != Sword)
      {
	punct_count++;
	if (i > 0 && SYNTAX (p[i-1]) == Sword) word_count++;
      }
  if (SYNTAX (p[len-1]) == Sword) word_count++;
  if (!word_count) return build_string ("");

  val = make_string (p, len - punct_count + 5 * (word_count - 1) + 4);

  o = XSTRING (val)->data;
  *o++ = '\\';
  *o++ = 'b';

  for (i = 0; i < len; i++)
    if (SYNTAX (p[i]) == Sword)
      *o++ = p[i];
    else if (i > 0 && SYNTAX (p[i-1]) == Sword && --word_count)
      {
	*o++ = '\\';
	*o++ = 'W';
	*o++ = '\\';
	*o++ = 'W';
	*o++ = '*';
      }

  *o++ = '\\';
  *o++ = 'b';

  return val;
}

DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
  "sSearch backward: ",
  "Search backward from point for STRING.\n\
Set point to the beginning of the occurrence found, and return point.\n\
An optional second argument bounds the search; it is a buffer position.\n\
The match found must not extend before that position.\n\
Optional third argument, if t, means if fail just return nil (no error).\n\
 If not nil and not t, position at limit of search and return nil.\n\
Optional fourth argument is repeat count--search for successive occurrences.\n\
See also the functions `match-beginning', `match-end' and `replace-match'.")
  (string, bound, noerror, count)
     Lisp_Object string, bound, noerror, count;
{
  return search_command (string, bound, noerror, count, -1, 0);
}

DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "sSearch: ",
  "Search forward from point for STRING.\n\
Set point to the end of the occurrence found, and return point.\n\
An optional second argument bounds the search; it is a buffer position.\n\
The match found must not extend after that position.  nil is equivalent\n\
  to (point-max).\n\
Optional third argument, if t, means if fail just return nil (no error).\n\
  If not nil and not t, move to limit of search and return nil.\n\
Optional fourth argument is repeat count--search for successive occurrences.\n\
See also the functions `match-beginning', `match-end' and `replace-match'.")
  (string, bound, noerror, count)
     Lisp_Object string, bound, noerror, count;
{
  return search_command (string, bound, noerror, count, 1, 0);
}

DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
  "sWord search backward: ",
  "Search backward from point for STRING, ignoring differences in punctuation.\n\
Set point to the beginning of the occurrence found, and return point.\n\
An optional second argument bounds the search; it is a buffer position.\n\
The match found must not extend before that position.\n\
Optional third argument, if t, means if fail just return nil (no error).\n\
  If not nil and not t, move to limit of search and return nil.\n\
Optional fourth argument is repeat count--search for successive occurrences.")
  (string, bound, noerror, count)
     Lisp_Object string, bound, noerror, count;
{
  return search_command (wordify (string), bound, noerror, count, -1, 1);
}

DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
  "sWord search: ",
  "Search forward from point for STRING, ignoring differences in punctuation.\n\
Set point to the end of the occurrence found, and return point.\n\
An optional second argument bounds the search; it is a buffer position.\n\
The match found must not extend after that position.\n\
Optional third argument, if t, means if fail just return nil (no error).\n\
  If not nil and not t, move to limit of search and return nil.\n\
Optional fourth argument is repeat count--search for successive occurrences.")
  (string, bound, noerror, count)
     Lisp_Object string, bound, noerror, count;
{
  return search_command (wordify (string), bound, noerror, count, 1, 1);
}

DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
  "sRE search backward: ",
  "Search backward from point for match for regular expression REGEXP.\n\
Set point to the beginning of the match, and return point.\n\
The match found is the one starting last in the buffer\n\
and yet ending before the place the origin of the search.\n\
An optional second argument bounds the search; it is a buffer position.\n\
The match found must start at or after that position.\n\
Optional third argument, if t, means if fail just return nil (no error).\n\
  If not nil and not t, move to limit of search and return nil.\n\
Optional fourth argument is repeat count--search for successive occurrences.\n\
See also the functions `match-beginning', `match-end' and `replace-match'.")
  (string, bound, noerror, count)
     Lisp_Object string, bound, noerror, count;
{
  return search_command (string, bound, noerror, count, -1, 1);
}

DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
  "sRE search: ",
  "Search forward from point for regular expression REGEXP.\n\
Set point to the end of the occurrence found, and return point.\n\
An optional second argument bounds the search; it is a buffer position.\n\
The match found must not extend after that position.\n\
Optional third argument, if t, means if fail just return nil (no error).\n\
  If not nil and not t, move to limit of search and return nil.\n\
Optional fourth argument is repeat count--search for successive occurrences.\n\
See also the functions `match-beginning', `match-end' and `replace-match'.")
  (string, bound, noerror, count)
     Lisp_Object string, bound, noerror, count;
{
  return search_command (string, bound, noerror, count, 1, 1);
}

DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 3, 0,
  "Replace text matched by last search with NEWTEXT.\n\
If second arg FIXEDCASE is non-nil, do not alter case of replacement text.\n\
Otherwise convert to all caps or cap initials, like replaced text.\n\
If third arg LITERAL is non-nil, insert NEWTEXT literally.\n\
Otherwise treat `\\' as special:\n\
  `\\&' in NEWTEXT means substitute original matched text.\n\
  `\\N' means substitute what matched the Nth `\\(...\\)'.\n\
       If Nth parens didn't match, substitute nothing.\n\
  `\\\\' means insert one `\\'.\n\
Leaves point at end of replacement text.")
  (string, fixedcase, literal)
     Lisp_Object string, fixedcase, literal;
{
  enum { nochange, all_caps, cap_initial } case_action;
  register int pos, last;
  int some_multiletter_word;
  int some_letter = 0;
  register int c, prevc;
  int inslen;

  CHECK_STRING (string, 0);

  case_action = nochange;	/* We tried an initialization */
				/* but some C compilers blew it */
Jim Blandy's avatar
Jim Blandy committed
1005 1006 1007 1008

  if (search_regs.num_regs <= 0)
    error ("replace-match called before any match found");

Jim Blandy's avatar
Jim Blandy committed
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
  if (search_regs.start[0] < BEGV
      || search_regs.start[0] > search_regs.end[0]
      || search_regs.end[0] > ZV)
    args_out_of_range(make_number (search_regs.start[0]),
		      make_number (search_regs.end[0]));

  if (NILP (fixedcase))
    {
      /* Decide how to casify by examining the matched text. */

      last = search_regs.end[0];
      prevc = '\n';
      case_action = all_caps;

      /* some_multiletter_word is set nonzero if any original word
	 is more than one letter long. */
      some_multiletter_word = 0;

      for (pos = search_regs.start[0]; pos < last; pos++)
	{
	  c = FETCH_CHAR (pos);
	  if (LOWERCASEP (c))
	    {
	      /* Cannot be all caps if any original char is lower case */

	      case_action = cap_initial;
	      if (SYNTAX (prevc) != Sword)
		{
		  /* Cannot even be cap initials
		     if some original initial is lower case */
		  case_action = nochange;
		  break;
		}
	      else
		some_multiletter_word = 1;
	    }
	  else if (!NOCASEP (c))
	    {
	      some_letter = 1;
	      if (!some_multiletter_word && SYNTAX (prevc) == Sword)
		some_multiletter_word = 1;
	    }

	  prevc = c;
	}

      /* Do not make new text all caps
	 if the original text contained only single letter words. */
      if (case_action == all_caps && !some_multiletter_word)
	case_action = cap_initial;

      if (!some_letter) case_action = nochange;
    }

  SET_PT (search_regs.end[0]);
  if (!NILP (literal))
    Finsert (1, &string);
  else
    {
      struct gcpro gcpro1;
      GCPRO1 (string);

      for (pos = 0; pos < XSTRING (string)->size; pos++)
	{
	  c = XSTRING (string)->data[pos];
	  if (c == '\\')
	    {
	      c = XSTRING (string)->data[++pos];
	      if (c == '&')
		Finsert_buffer_substring (Fcurrent_buffer (),
					  make_number (search_regs.start[0]),
					  make_number (search_regs.end[0]));
Jim Blandy's avatar
Jim Blandy committed
1081
	      else if (c >= '1' && c <= search_regs.num_regs + '0')
Jim Blandy's avatar
Jim Blandy committed
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		{
		  if (search_regs.start[c - '0'] >= 1)
		    Finsert_buffer_substring (Fcurrent_buffer (),
					      make_number (search_regs.start[c - '0']),
					      make_number (search_regs.end[c - '0']));
		}
	      else
		insert_char (c);
	    }
	  else
	    insert_char (c);
	}
      UNGCPRO;
    }

  inslen = point - (search_regs.end[0]);
  del_range (search_regs.start[0], search_regs.end[0]);

  if (case_action == all_caps)
    Fupcase_region (make_number (point - inslen), make_number (point));
  else if (case_action == cap_initial)
    upcase_initials_region (make_number (point - inslen), make_number (point));
  return Qnil;
}

static Lisp_Object
match_limit (num, beginningp)
     Lisp_Object num;
     int beginningp;
{
  register int n;

  CHECK_NUMBER (num, 0);
  n = XINT (num);
Jim Blandy's avatar
Jim Blandy committed
1116 1117 1118 1119
  if (n < 0 || n >= search_regs.num_regs)
    args_out_of_range (num, make_number (search_regs.num_regs));
  if (search_regs.num_regs <= 0
      || search_regs.start[n] < 0)
Jim Blandy's avatar
Jim Blandy committed
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    return Qnil;
  return (make_number ((beginningp) ? search_regs.start[n]
		                    : search_regs.end[n]));
}

DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
  "Return position of start of text matched by last search.\n\
ARG, a number, specifies which parenthesized expression in the last regexp.\n\
 Value is nil if ARGth pair didn't match, or there were less than ARG pairs.\n\
Zero means the entire text matched by the whole regexp or whole string.")
  (num)
     Lisp_Object num;
{
  return match_limit (num, 1);
}

DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
  "Return position of end of text matched by last search.\n\
ARG, a number, specifies which parenthesized expression in the last regexp.\n\
 Value is nil if ARGth pair didn't match, or there were less than ARG pairs.\n\
Zero means the entire text matched by the whole regexp or whole string.")
  (num)
     Lisp_Object num;
{
  return match_limit (num, 0);
} 

DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 0, 0,
  "Return a list containing all info on what the last search matched.\n\
Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.\n\
All the elements are markers or nil (nil if the Nth pair didn't match)\n\
if the last match was on a buffer; integers or nil if a string was matched.\n\
Use `store-match-data' to reinstate the data in this list.")
  ()
{
Jim Blandy's avatar
Jim Blandy committed
1155
  Lisp_Object *data;
Jim Blandy's avatar
Jim Blandy committed
1156 1157
  int i, len;

Jim Blandy's avatar
Jim Blandy committed
1158 1159 1160
  data = (Lisp_Object *) alloca ((2 * search_regs.num_regs)
				 * sizeof (Lisp_Object));

Jim Blandy's avatar
Jim Blandy committed
1161
  len = -1;
Jim Blandy's avatar
Jim Blandy committed
1162
  for (i = 0; i < search_regs.num_regs; i++)
Jim Blandy's avatar
Jim Blandy committed
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    {
      int start = search_regs.start[i];
      if (start >= 0)
	{
	  if (search_regs_from_string)
	    {
	      XFASTINT (data[2 * i]) = start;
	      XFASTINT (data[2 * i + 1]) = search_regs.end[i];
	    }
	  else
	    {
	      data[2 * i] = Fmake_marker ();
	      Fset_marker (data[2 * i], make_number (start), Qnil);
	      data[2 * i + 1] = Fmake_marker ();
	      Fset_marker (data[2 * i + 1],
			   make_number (search_regs.end[i]), Qnil);
	    }
	  len = i;
	}
      else
	data[2 * i] = data [2 * i + 1] = Qnil;
    }
  return Flist (2 * len + 2, data);
}


DEFUN ("store-match-data", Fstore_match_data, Sstore_match_data, 1, 1, 0,
  "Set internal data on last search match from elements of LIST.\n\
LIST should have been created by calling `match-data' previously.")
  (list)
     register Lisp_Object list;
{
  register int i;
  register Lisp_Object marker;

  if (!CONSP (list) && !NILP (list))
    list = wrong_type_argument (Qconsp, list, 0);

Jim Blandy's avatar
Jim Blandy committed
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
  /* Allocate registers if they don't already exist.  */
  {
    int length = Flength (list) / 2;

    if (length > search_regs.num_regs)
      {
	if (search_regs.start)
	  search_regs.start =
	    (regoff_t *) realloc (search_regs.start,
				  length * sizeof (regoff_t));
	else
	  search_regs.start = (regoff_t *) malloc (length * sizeof (regoff_t));
	if (search_regs.end)
	  search_regs.end =
	    (regoff_t *) realloc (search_regs.end,
				  length * sizeof (regoff_t));
	else
	  search_regs.end = (regoff_t *) malloc (length * sizeof (regoff_t));

	search_regs.num_regs = length;
      }
  }

  for (i = 0; i < search_regs.num_regs; i++)
Jim Blandy's avatar
Jim Blandy committed
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
    {
      marker = Fcar (list);
      if (NILP (marker))
	{
	  search_regs.start[i] = -1;
	  list = Fcdr (list);
	}
      else
	{
	  if (XTYPE (marker) == Lisp_Marker
	      && XMARKER (marker)->buffer == 0)
	    XFASTINT (marker) = 0;

	  CHECK_NUMBER_COERCE_MARKER (marker, 0);
	  search_regs.start[i] = XINT (marker);
	  list = Fcdr (list);

	  marker = Fcar (list);
	  if (XTYPE (marker) == Lisp_Marker
	      && XMARKER (marker)->buffer == 0)
	    XFASTINT (marker) = 0;

	  CHECK_NUMBER_COERCE_MARKER (marker, 0);
	  search_regs.end[i] = XINT (marker);
	}
      list = Fcdr (list);
    }

  return Qnil;  
}

/* Quote a string to inactivate reg-expr chars */

DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
  "Return a regexp string which matches exactly STRING and nothing else.")
  (str)
     Lisp_Object str;
{
  register unsigned char *in, *out, *end;
  register unsigned char *temp;

  CHECK_STRING (str, 0);

  temp = (unsigned char *) alloca (XSTRING (str)->size * 2);

  /* Now copy the data into the new string, inserting escapes. */

  in = XSTRING (str)->data;
  end = in + XSTRING (str)->size;
  out = temp; 

  for (; in != end; in++)
    {
      if (*in == '[' || *in == ']'
	  || *in == '*' || *in == '.' || *in == '\\'
	  || *in == '?' || *in == '+'
	  || *in == '^' || *in == '$')
	*out++ = '\\';
      *out++ = *in;
    }

  return make_string (temp, out - temp);
}
  
syms_of_search ()
{
  register int i;

  searchbuf.allocated = 100;
Jim Blandy's avatar
Jim Blandy committed
1294
  searchbuf.buffer = (unsigned char *) malloc (searchbuf.allocated);
Jim Blandy's avatar
Jim Blandy committed
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
  searchbuf.fastmap = search_fastmap;

  Qsearch_failed = intern ("search-failed");
  staticpro (&Qsearch_failed);
  Qinvalid_regexp = intern ("invalid-regexp");
  staticpro (&Qinvalid_regexp);

  Fput (Qsearch_failed, Qerror_conditions,
	Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
  Fput (Qsearch_failed, Qerror_message,
	build_string ("Search failed"));

  Fput (Qinvalid_regexp, Qerror_conditions,
	Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
  Fput (Qinvalid_regexp, Qerror_message,
	build_string ("Invalid regexp"));

  last_regexp = Qnil;
  staticpro (&last_regexp);

  defsubr (&Sstring_match);
  defsubr (&Slooking_at);
  defsubr (&Sskip_chars_forward);
  defsubr (&Sskip_chars_backward);
  defsubr (&Ssearch_forward);
  defsubr (&Ssearch_backward);
  defsubr (&Sword_search_forward);
  defsubr (&Sword_search_backward);
  defsubr (&Sre_search_forward);
  defsubr (&Sre_search_backward);
  defsubr (&Sreplace_match);
  defsubr (&Smatch_beginning);
  defsubr (&Smatch_end);
  defsubr (&Smatch_data);
  defsubr (&Sstore_match_data);
  defsubr (&Sregexp_quote);
}