intervals.c 36.8 KB
Newer Older
Joseph Arceneaux's avatar
Joseph Arceneaux committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/* Code for doing intervals.
   Copyright (C) 1991, 1992 Free Software Foundation, Inc.

This file is part of GNU Emacs.

GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */


/* NOTES:

   Have to ensure that we can't put symbol nil on a plist, or some
   functions may work incorrectly.

   An idea:  Have the owner of the tree keep count of splits and/or
   insertion lengths (in intervals), and balance after every N.

   Need to call *_left_hook when buffer is killed.

   Scan for zero-length, or 0-length to see notes about handling
   zero length interval-markers.

   There are comments around about freeing intervals.  It might be
   faster to explicitly free them (put them on the free list) than
   to GC them.

*/


#include "config.h"
#include "lisp.h"
#include "intervals.h"
#include "buffer.h"
#include "screen.h"

/* Factor for weight-balancing interval trees. */
Lisp_Object interval_balance_threshold;

/* Utility functions for intervals. */


/* Create the root interval of some object, a buffer or string. */

INTERVAL
create_root_interval (parent)
     Lisp_Object parent;
{
  INTERVAL new = make_interval ();

  if (XTYPE (parent) == Lisp_Buffer)
    {
      new->total_length = BUF_Z (XBUFFER (parent)) - 1;
      XBUFFER (parent)->intervals = new;
    }
  else if (XTYPE (parent) == Lisp_String)
    {
      new->total_length = XSTRING (parent)->size;
      XSTRING (parent)->intervals = new;
    }

  new->parent = (INTERVAL) parent;
  new->position = 1;

  return new;
}

/* Make the interval TARGET have exactly the properties of SOURCE */

void
copy_properties (source, target)
     register INTERVAL source, target;
{
  if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
    return;

  COPY_INTERVAL_CACHE (source, target);
  target->plist = Fcopy_sequence (source->plist);
}

/* Merge the properties of interval SOURCE into the properties
   of interval TARGET. */

static void
merge_properties (source, target)
     register INTERVAL source, target;
{
  register Lisp_Object o, sym, val;

  if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
    return;

  MERGE_INTERVAL_CACHE (source, target);

  o = source->plist;
  while (! EQ (o, Qnil))
    {
      sym = Fcar (o);
      val = Fmemq (sym, target->plist);

      if (NILP (val))
	{
	  o = Fcdr (o);
	  val = Fcar (o);
	  target->plist = Fcons (sym, Fcons (val, target->plist));
	  o = Fcdr (o);
	}
      else
	o = Fcdr (Fcdr (o));
    }
}

/* Return 1 if the two intervals have the same properties,
   0 otherwise. */

int
intervals_equal (i0, i1)
     INTERVAL i0, i1;
{
  register Lisp_Object i0_cdr, i0_sym, i1_val;
  register i1_len;

  if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
    return 1;

  i1_len = XFASTINT (Flength (i1->plist));
  if (i1_len & 0x1)		/* Paranoia -- plists are always even */
    abort ();
  i1_len /= 2;
  i0_cdr = i0->plist;
  while (!NILP (i0_cdr))
    {
      /* Lengths of the two plists were unequal */
      if (i1_len == 0)
	return 0;

      i0_sym = Fcar (i0_cdr);
      i1_val = Fmemq (i0_sym, i1->plist);

      /* i0 has something i1 doesn't */
      if (EQ (i1_val, Qnil))
	return 0;

      /* i0 and i1 both have sym, but it has different values in each */
      i0_cdr = Fcdr (i0_cdr);
      if (! Fequal (i1_val, Fcar (i0_cdr)))
	return 0;

      i0_cdr = Fcdr (i0_cdr);
      i1_len--;
    }

  /* Lengths of the two plists were unequal */
  if (i1_len > 0)
    return 0;

  return 1;
}

static int icount;
static int idepth;
static int zero_length;

static int depth;

/* Traverse an interval tree TREE, performing FUNCTION on each node.

   Perhaps we should pass the depth as an argument. */

void
traverse_intervals (tree, position, function)
     INTERVAL tree;
     int position;
     void (* function) ();
{
  if (NULL_INTERVAL_P (tree))
    return;

  depth++;
  traverse_intervals (tree->left, position, function);
  position += LEFT_TOTAL_LENGTH (tree);
  tree->position = position;
  (*function) (tree);
  position += LENGTH (tree);
  traverse_intervals (tree->right, position, function);
  depth--;
}

#if 0
/* These functions are temporary, for debugging purposes only. */

INTERVAL search_interval, found_interval;

void
check_for_interval (i)
     register INTERVAL i;
{
  if (i == search_interval)
    {
      found_interval = i;
      icount++;
    }
}

INTERVAL
search_for_interval (i, tree)
     register INTERVAL i, tree;
{
  icount = 0;
  search_interval = i;
  found_interval = NULL_INTERVAL;
  traverse_intervals (tree, 1, &check_for_interval);
  return found_interval;
}

static void
inc_interval_count (i)
     INTERVAL i;
{
  icount++;
  if (LENGTH (i) == 0)
    zero_length++;
  if (depth > idepth)
    idepth = depth;
}

int
count_intervals (i)
     register INTERVAL i;
{
  icount = 0;
  idepth = 0;
  zero_length = 0;
  traverse_intervals (i, 1, &inc_interval_count);

  return icount;
}

static INTERVAL
root_interval (interval)
     INTERVAL interval;
{
  register INTERVAL i = interval;

  while (! ROOT_INTERVAL_P (i))
    i = i->parent;

  return i;
}
#endif

/* Assuming that a left child exists, perform the following operation:

     A		  B
    / \		 / \
   B       =>       A
  / \		   / \
     c		  c
*/

static INTERVAL
rotate_right (interval)
     INTERVAL interval;
{
  INTERVAL i;
  INTERVAL B = interval->left;
  int len = LENGTH (interval);

  /* Deal with any Parent of A;  make it point to B. */
  if (! ROOT_INTERVAL_P (interval))
    if (AM_LEFT_CHILD (interval))
      interval->parent->left = interval->left;
    else
      interval->parent->right = interval->left;
  interval->left->parent = interval->parent;

  /* B gets the same length as A, since it get A's position in the tree. */
  interval->left->total_length = interval->total_length;

  /* B becomes the parent of A. */
  i = interval->left->right;
  interval->left->right = interval;
  interval->parent = interval->left;

  /* A gets c as left child. */
  interval->left = i;
  if (! NULL_INTERVAL_P (i))
    i->parent = interval;
  interval->total_length = (len + LEFT_TOTAL_LENGTH (interval)
			    + RIGHT_TOTAL_LENGTH (interval));

  return B;
}

/* Assuming that a right child exists, perform the following operation:

    A               B   
   / \	           / \  
      B	   =>     A
     / \         / \    
    c               c
*/

static INTERVAL
rotate_left (interval)
     INTERVAL interval;
{
  INTERVAL i;
  INTERVAL B = interval->right;
  int len = LENGTH (interval);

  /* Deal with the parent of A. */
  if (! ROOT_INTERVAL_P (interval))
    if (AM_LEFT_CHILD (interval))
      interval->parent->left = interval->right;
    else
      interval->parent->right = interval->right;
  interval->right->parent = interval->parent;

  /* B must have the same total length of A. */
  interval->right->total_length = interval->total_length;

  /* Make B the parent of A */
  i = interval->right->left;
  interval->right->left = interval;
  interval->parent = interval->right;

  /* Make A point to c */
  interval->right = i;
  if (! NULL_INTERVAL_P (i))
    i->parent = interval;
  interval->total_length = (len + LEFT_TOTAL_LENGTH (interval)
			    + RIGHT_TOTAL_LENGTH (interval));

  return B;
}

/* Split an interval into two.  The second (RIGHT) half is returned as
   the new interval.  The size and position of the interval being split are
   stored within it, having been found by find_interval ().  The properties
   are reset;  it is up to the caller to do the right thing.

   Note that this does not change the position of INTERVAL;  if it is a root,
   it is still a root after this operation. */

INTERVAL
split_interval_right (interval, relative_position)
     INTERVAL interval;
     int relative_position;
{
  INTERVAL new = make_interval ();
  int position = interval->position;
  int new_length = LENGTH (interval) - relative_position + 1;

  new->position = position + relative_position - 1;
  new->parent = interval;
#if 0
  copy_properties (interval, new);
#endif

  if (LEAF_INTERVAL_P (interval) || NULL_RIGHT_CHILD (interval))
    {
      interval->right = new;
      new->total_length = new_length;

      return new;
    }

  /* Insert the new node between INTERVAL and its right child. */
  new->right = interval->right;
  interval->right->parent = new;
  interval->right = new;

  new->total_length = new_length + new->right->total_length;

  return new;
}

/* Split an interval into two.  The first (LEFT) half is returned as
   the new interval.  The size and position of the interval being split
   are stored within it, having been found by find_interval ().  The
   properties are reset;  it is up to the caller to do the right thing.

   Note that this does not change the position of INTERVAL in the tree;  if it
   is a root, it is still a root after this operation.  */

INTERVAL
split_interval_left (interval, relative_position)
     INTERVAL interval;
     int relative_position;
{
  INTERVAL new = make_interval ();
  int position = interval->position;
  int new_length = relative_position - 1;

#if 0
  copy_properties (interval, new);
#endif

  new->position = interval->position;

  interval->position = interval->position + relative_position - 1;
  new->parent = interval;

  if (NULL_LEFT_CHILD (interval))
    {
      interval->left = new;
      new->total_length = new_length;

      return new;
    }

  /* Insert the new node between INTERVAL and its left child. */
  new->left = interval->left;
  new->left->parent = new;
  interval->left = new;
  new->total_length = LENGTH (new) + LEFT_TOTAL_LENGTH (new);

  return new;
}

/* Find the interval containing POSITION in TREE.  POSITION is relative
   to the start of TREE. */

INTERVAL
find_interval (tree, position)
     register INTERVAL tree;
     register int position;
{
  register int relative_position = position;

  if (NULL_INTERVAL_P (tree))
    return NULL_INTERVAL;

  if (position > TOTAL_LENGTH (tree))
    abort ();			/* Paranoia */
#if 0
    position = TOTAL_LENGTH (tree);
#endif

  while (1)
    {
      if (relative_position <= LEFT_TOTAL_LENGTH (tree))
	{
	  tree = tree->left;
	}
      else if (relative_position > (TOTAL_LENGTH (tree)
				    - RIGHT_TOTAL_LENGTH (tree)))
	{
	  relative_position -= (TOTAL_LENGTH (tree)
				- RIGHT_TOTAL_LENGTH (tree));
	  tree = tree->right;
	}
      else
	{
	  tree->position = LEFT_TOTAL_LENGTH (tree)
	                   + position - relative_position + 1;
	  return tree;
	}
    }
}

/* Find the succeeding interval (lexicographically) to INTERVAL.
   Sets the `position' field based on that of INTERVAL.

   Note that those values are only correct if they were also correct
   in INTERVAL. */

INTERVAL
next_interval (interval)
     register INTERVAL interval;
{
  register INTERVAL i = interval;
  register int next_position;

  if (NULL_INTERVAL_P (i))
    return NULL_INTERVAL;
  next_position = interval->position + LENGTH (interval);

  if (! NULL_RIGHT_CHILD (i))
    {
      i = i->right;
      while (! NULL_LEFT_CHILD (i))
	i = i->left;

      i->position = next_position;
      return i;
    }

  while (! NULL_PARENT (i))
    {
      if (AM_LEFT_CHILD (i))
	{
	  i = i->parent;
	  i->position = next_position;
	  return i;
	}

      i = i->parent;
    }

  return NULL_INTERVAL;
}

/* Find the preceding interval (lexicographically) to INTERVAL.
   Sets the `position' field based on that of INTERVAL.

   Note that those values are only correct if they were also correct
   in INTERVAL. */

INTERVAL
previous_interval (interval)
     register INTERVAL interval;
{
  register INTERVAL i;
  register position_of_previous;

  if (NULL_INTERVAL_P (interval))
    return NULL_INTERVAL;

  if (! NULL_LEFT_CHILD (interval))
    {
      i = interval->left;
      while (! NULL_RIGHT_CHILD (i))
	i = i->right;

      i->position = interval->position - LENGTH (i);
      return i;
    }

  i = interval;
  while (! NULL_PARENT (i))
    {
      if (AM_RIGHT_CHILD (i))
	{
	  i = i->parent;

	  i->position = interval->position - LENGTH (i);
	  return i;
	}
      i = i->parent;
    }

  return NULL_INTERVAL;
}

/* Traverse a path down the interval tree TREE to the interval
   containing POSITION, adjusting all nodes on the path for
   an addition of LENGTH characters.  Insertion between two intervals
   (i.e., point == i->position, where i is second interval) means
   text goes into second interval.

   Modifications are needed to handle the hungry bits -- after simply
   finding the interval at position (don't add length going down),
   if it's the beginning of the interval, get the previous interval
   and check the hugry bits of both.  Then add the length going back up
   to the root. */

static INTERVAL
adjust_intervals_for_insertion (tree, position, length)
     INTERVAL tree;
     int position, length;
{
  register int relative_position;
  register INTERVAL this;

  if (TOTAL_LENGTH (tree) == 0)	/* Paranoia */
    abort ();

  /* If inserting at point-max of a buffer, that position
     will be out of range */
  if (position > TOTAL_LENGTH (tree))
    position = TOTAL_LENGTH (tree);
  relative_position = position;
  this = tree;

  while (1)
    {
      if (relative_position <= LEFT_TOTAL_LENGTH (this))
	{
	  this->total_length += length;
	  this = this->left;
	}
      else if (relative_position > (TOTAL_LENGTH (this)
				    - RIGHT_TOTAL_LENGTH (this)))
	{
	  relative_position -= (TOTAL_LENGTH (this)
				- RIGHT_TOTAL_LENGTH (this));
	  this->total_length += length;
	  this = this->right;
	}
      else
	{
	  /* If we are to use zero-length intervals as buffer pointers,
	     then this code will have to change. */
	  this->total_length += length;
	  this->position = LEFT_TOTAL_LENGTH (this)
	                   + position - relative_position + 1;
	  return tree;
	}
    }
}

/* Merge interval I with its lexicographic successor. Note that
   this does not deal with the properties, or delete I. */

INTERVAL
merge_interval_right (i)
     register INTERVAL i;
{
  register int absorb = LENGTH (i);

  /* Zero out this interval. */
  i->total_length -= absorb;

  /* Find the succeeding interval. */
  if (! NULL_RIGHT_CHILD (i))      /* It's below us.  Add absorb
				      as we descend. */
    {
      i = i->right;
      while (! NULL_LEFT_CHILD (i))
	{
	  i->total_length += absorb;
	  i = i->left;
	}

      i->total_length += absorb;
      return i;
    }

  while (! NULL_PARENT (i))	   /* It's above us.  Subtract as
				      we ascend. */
    {
      if (AM_LEFT_CHILD (i))
	{
	  i = i->parent;
	  return i;
	}

      i = i->parent;
      i->total_length -= absorb;
    }

  return NULL_INTERVAL;
}

/* Merge interval I with its lexicographic predecessor. Note that
   this does not deal with the properties, or delete I.*/

INTERVAL
merge_interval_left (i)
     register INTERVAL i;
{
  register int absorb = LENGTH (i);

  /* Zero out this interval. */
  i->total_length -= absorb;

  /* Find the preceding interval. */
  if (! NULL_LEFT_CHILD (i))	/* It's below us. Go down,
				   adding ABSORB as we go. */
    {
      i = i->left;
      while (! NULL_RIGHT_CHILD (i))
	{
	  i->total_length += absorb;
	  i = i->right;
	}

      i->total_length += absorb;
      return i;
    }

  while (! NULL_PARENT (i))	/* It's above us.  Go up,
				   subtracting ABSORB. */
    {
      if (AM_RIGHT_CHILD (i))
	{
	  i = i->parent;
	  return i;
	}

      i = i->parent;
      i->total_length -= absorb;
    }

  return NULL_INTERVAL;
}

/* Delete an interval node from its btree by merging its subtrees
   into one subtree which is returned.  Caller is responsible for
   storing the resulting subtree into its parent. */

static INTERVAL
delete_node (i)
     register INTERVAL i;
{
  register INTERVAL migrate, this;
  register int migrate_amt;

  if (NULL_INTERVAL_P (i->left))
    return i->right;
  if (NULL_INTERVAL_P (i->right))
    return i->left;

  migrate = i->left;
  migrate_amt = i->left->total_length;
  this = i->right;
  this->total_length += migrate_amt;
  while (! NULL_INTERVAL_P (this->left))
    {
      this = this->left;
      this->total_length += migrate_amt;
    }
  this->left = migrate;
  migrate->parent = this;

  return i->right;
}

/* Delete interval I from its tree by calling `delete_node'
   and properly connecting the resultant subtree.

   I is presumed to be empty; that is, no adjustments are made
   for the length of I. */

void
delete_interval (i)
     register INTERVAL i;
{
  register INTERVAL parent;
  int amt = LENGTH (i);

  if (amt > 0)			/* Only used on zero-length intervals now. */
    abort ();

  if (ROOT_INTERVAL_P (i))
    {
      Lisp_Object owner = (Lisp_Object) i->parent;
      parent = delete_node (i);
      if (! NULL_INTERVAL_P (parent))
	parent->parent = (INTERVAL) owner;

      if (XTYPE (owner) == Lisp_Buffer)
	XBUFFER (owner)->intervals = parent;
      else if (XTYPE (owner) == Lisp_String)
	XSTRING (owner)->intervals = parent;
      else
	abort ();

      return;
    }

  parent = i->parent;
  if (AM_LEFT_CHILD (i))
    {
      parent->left = delete_node (i);
      if (! NULL_INTERVAL_P (parent->left))
	parent->left->parent = parent;
    }
  else
    {
      parent->right = delete_node (i);
      if (! NULL_INTERVAL_P (parent->right))
	parent->right->parent = parent;
    }
}

/* Recurse down to the interval containing FROM.  Then delete as much
   as possible (up to AMOUNT) from that interval, adjusting parental
   intervals on the way up.  If an interval is zeroed out, then
   it is deleted.

   Returns the amount deleted. */

static int
interval_deletion_adjustment (tree, from, amount)
     register INTERVAL tree;
     register int from, amount;
{
  register int relative_position = from;

  if (NULL_INTERVAL_P (tree))
    return 0;

  /* Left branch */
  if (relative_position <= LEFT_TOTAL_LENGTH (tree))
    {
      int subtract = interval_deletion_adjustment (tree->left,
						   relative_position,
						   amount);
      tree->total_length -= subtract;
      return subtract;
    }
  /* Right branch */
  else if (relative_position > (TOTAL_LENGTH (tree)
				- RIGHT_TOTAL_LENGTH (tree)))
    {
      int subtract;

      relative_position -= (tree->total_length
			    - RIGHT_TOTAL_LENGTH (tree));
      subtract = interval_deletion_adjustment (tree->right,
					       relative_position,
					       amount);
      tree->total_length -= subtract;
      return subtract;
    }
  /* Here -- this node */
  else
    {
      /* If this is a zero-length, marker interval, then
	 we must skip it. */

      if (relative_position == LEFT_TOTAL_LENGTH (tree) + 1)
	{
	  /* This means we're deleting from the beginning of this interval. */
	  register int my_amount = LENGTH (tree);

	  if (amount < my_amount)
	    {
	      tree->total_length -= amount;
	      return amount;
	    }
	  else
	    {
	      tree->total_length -= my_amount;
	      if (LENGTH (tree) != 0)
		abort ();	/* Paranoia */

	      delete_interval (tree);
	      return my_amount;
	    }
	}
      else			/* Deleting starting in the middle. */
	{
	  register int my_amount = ((tree->total_length
				     - RIGHT_TOTAL_LENGTH (tree))
				    - relative_position + 1);

	  if (amount <= my_amount)
	    {
	      tree->total_length -= amount;
	      return amount;
	    }
	  else
	    {
	      tree->total_length -= my_amount;
	      return my_amount;
	    }
	}
    }

  abort ();
}

static void
adjust_intervals_for_deletion (buffer, start, length)
     struct buffer *buffer;
     int start, length;
{
  register int left_to_delete = length;
  register INTERVAL tree = buffer->intervals;
  register int deleted;

  if (NULL_INTERVAL_P (tree))
    return;

  if (length == TOTAL_LENGTH (tree))
    {
      buffer->intervals = NULL_INTERVAL;
      return;
    }

  if (ONLY_INTERVAL_P (tree))
    {
      tree->total_length -= length;
      return;
    }

  if (start > TOTAL_LENGTH (tree))
    start = TOTAL_LENGTH (tree);
  while (left_to_delete > 0)
    {
      left_to_delete -= interval_deletion_adjustment (tree, start,
						      left_to_delete);
      tree = buffer->intervals;
      if (left_to_delete == tree->total_length)
	{
	  buffer->intervals = NULL_INTERVAL;
	  return;
	}
    }
}

/* Note that all intervals in OBJECT after START have slid by LENGTH. */

INLINE void
offset_intervals (buffer, start, length)
     struct buffer *buffer;
     int start, length;
{
  if (NULL_INTERVAL_P (buffer->intervals) || length == 0)
    return;

  if (length > 0)
    adjust_intervals_for_insertion (buffer->intervals, start, length);
  else
    adjust_intervals_for_deletion (buffer, start, -length);
}

static INTERVAL
reproduce_tree (source, parent)
     INTERVAL source, parent;
{
  register INTERVAL t = make_interval ();

  bcopy (source, t, INTERVAL_SIZE);
  copy_properties (source, t);
  t->parent = parent;
  if (! NULL_LEFT_CHILD (source))
    t->left = reproduce_tree (source->left, t);
  if (! NULL_RIGHT_CHILD (source))
    t->right = reproduce_tree (source->right, t);

  return t;
}

static INTERVAL
make_new_interval (intervals, start, length)
     INTERVAL intervals;
     int start, length;
{
  INTERVAL slot;

  slot = find_interval (intervals, start);
  if (start + length > slot->position + LENGTH (slot))
    error ("Interval would overlap");

  if (start == slot->position && length == LENGTH (slot))
    return slot;

  if (slot->position == start)
    {
      /* New right node. */
      split_interval_right (slot, length + 1);
      return slot;
    }

  if (slot->position + LENGTH (slot) == start + length)
    {
      /* New left node. */
      split_interval_left (slot, LENGTH (slot) - length + 1);
      return slot;
    }

  /* Convert interval SLOT into three intervals. */
  split_interval_left (slot, start - slot->position + 1);
  split_interval_right (slot, length + 1);
  return slot;
}

void
map_intervals (source, destination, position)
     INTERVAL source, destination;
     int position;
{
  register INTERVAL i, t;

  if (NULL_INTERVAL_P (source))
    return;
  i = find_interval (destination, position);
  if (NULL_INTERVAL_P (i))
    return;

  t = find_interval (source, 1);
  while (! NULL_INTERVAL_P (t))
    {
      i = make_new_interval (destination, position, LENGTH (t));
      position += LENGTH (t);
      copy_properties (t, i);
      t = next_interval (t);
    }
}

/* Insert the intervals of NEW_TREE into BUFFER at POSITION.

   This is used in insdel.c when inserting Lisp_Strings into
   the buffer.  The text corresponding to NEW_TREE is already in
   the buffer when this is called.  The intervals of new tree are
   those belonging to the string being inserted;  a copy is not made.

   If the inserted text had no intervals associated, this function
   simply returns -- offset_intervals should handle placing the
   text in the correct interval, depending on the hungry bits.

   If the inserted text had properties (intervals), then there are two
   cases -- either insertion happened in the middle of some interval,
   or between two intervals.

   If the text goes into the middle of an interval, then new
   intervals are created in the middle with only the properties of
   the new text, *unless* the macro MERGE_INSERTIONS is true, in
   which case the new text has the union of its properties and those
   of the text into which it was inserted.

   If the text goes between two intervals, then if neither interval
   had its appropriate hungry property set (front_hungry, rear_hungry),
   the new text has only its properties.  If one of the hungry properties
   is set, then the new text "sticks" to that region and its properties
   depend on merging as above.  If both the preceding and succeding
   intervals to the new text are "hungry", then the new text retains
   only its properties, as if neither hungry property were set.  Perhaps
   we should consider merging all three sets of properties onto the new
   text... */

void
graft_intervals_into_buffer (new_tree, position, b)
     INTERVAL new_tree;
     int position;
     struct buffer *b;
{
  register INTERVAL under, over, this;
  register INTERVAL tree = b->intervals;

  /* If the new text has no properties, it becomes part of whatever
    interval it was inserted into. */
  if (NULL_INTERVAL_P (new_tree))
    return;

  /* Paranoia -- the text has already been added, so this buffer
     should be of non-zero length. */
  if (TOTAL_LENGTH (tree) == 0)
    abort ();

  if (NULL_INTERVAL_P (tree))
    {
      /* The inserted text constitutes the whole buffer, so
	 simply copy over the interval structure. */
      if (BUF_Z (b) == TOTAL_LENGTH (new_tree))
	{
	  b->intervals = reproduce_tree (new_tree, tree->parent);
	  /* Explicitly free the old tree here. */

	  return;
	}

      /* Create an interval tree in which to place a copy
         of the intervals of the inserted string. */
      {
	Lisp_Object buffer;
	XSET (buffer, Lisp_Buffer, b);
	create_root_interval (buffer);
      }
    }
  else
    if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (new_tree))

    /* If the buffer contains only the new string, but
       there was already some interval tree there, then it may be
       some zero length intervals.  Eventually, do something clever
       about inserting properly.  For now, just waste the old intervals. */
    {
      b->intervals = reproduce_tree (new_tree, tree->parent);
      /* Explicitly free the old tree here. */

      return;
    }

  this = under = find_interval (tree, position);
  if (NULL_INTERVAL_P (under))	/* Paranoia */
    abort ();
  over = find_interval (new_tree, 1);

  /* Insertion between intervals */
  if (position == under->position)
    {
      /* First interval -- none precede it. */
      if (position == 1)
	{
	  if (! under->front_hungry)
	    /* The inserted string keeps its own properties. */
	    while (! NULL_INTERVAL_P (over))
	    {
	      position = LENGTH (over) + 1;
	      this = split_interval_left (this, position);
	      copy_properties (over, this);
	      over = next_interval (over);
	    }
	  else
	    /* This string sticks to under */
	    while (! NULL_INTERVAL_P (over))
	    {
	      position = LENGTH (over) + 1;
	      this = split_interval_left (this, position);
	      copy_properties (under, this);
	      if (MERGE_INSERTIONS (under))
		merge_properties (over, this);
	      over = next_interval (over);
	    }
	}
       else
	{
	  INTERVAL prev = previous_interval (under);
	  if (NULL_INTERVAL_P (prev))
	    abort ();

	  if (prev->rear_hungry)
	    {
	      if (under->front_hungry)
		/* The intervals go inbetween as the two hungry
		   properties cancel each other.  Should we change
		   this policy? */
		while (! NULL_INTERVAL_P (over))
		  {
		    position = LENGTH (over) + 1;
		    this = split_interval_left (this, position);
		    copy_properties (over, this);
		    over = next_interval (over);
		  }
	      else
		/* The intervals stick to prev */
		while (! NULL_INTERVAL_P (over))
		  {
		    position = LENGTH (over) + 1;
		    this = split_interval_left (this, position);
		    copy_properties (prev, this);
		    if (MERGE_INSERTIONS (prev))
		      merge_properties (over, this);
		    over = next_interval (over);
		  }
	    }
	  else
	    {
	      if (under->front_hungry)
		/* The intervals stick to under */
		while (! NULL_INTERVAL_P (over))
		  {
		    position = LENGTH (over) + 1;
		    this = split_interval_left (this, position);
		    copy_properties (under, this);
		    if (MERGE_INSERTIONS (under))
		      merge_properties (over, this);
		    over = next_interval (over);
		  }
	      else
		/* The intervals go inbetween */
		while (! NULL_INTERVAL_P (over))
		  {
		    position = LENGTH (over) + 1;
		    this = split_interval_left (this, position);
		    copy_properties (over, this);
		    over = next_interval (over);
		  }
	    }
	}

      b->intervals = balance_intervals (b->intervals);
      return;
    }

  /* Here for insertion in the middle of an interval. */

  if (TOTAL_LENGTH (new_tree) < LENGTH (this))
    {
      INTERVAL end_unchanged
	= split_interval_right (this, TOTAL_LENGTH (new_tree) + 1);
      copy_properties (under, end_unchanged);
    }

  position = position - tree->position + 1;
  while (! NULL_INTERVAL_P (over))
    {
      this = split_interval_right (under, position);
      copy_properties (over, this);
      if (MERGE_INSERTIONS (under))
	merge_properties (under, this);

      position = LENGTH (over) + 1;
      over = next_interval (over);
    }

  b->intervals = balance_intervals (b->intervals);
  return;
}

/* Intervals can have properties which are hooks to call.  Look for
   the property HOOK on interval I, and if found, call its value as
   a function.*/

void
run_hooks (i, hook)
     INTERVAL i;
     Lisp_Object hook;
{
  register Lisp_Object tail = i->plist;
  register Lisp_Object sym, val;

  while (! NILP (tail))
    {
      sym = Fcar (tail);
      if (EQ (sym, hook))
	{
	  Lisp_Object begin, end;
	  XFASTINT (begin) = i->position;
	  XFASTINT (end) = i->position + LENGTH (i) - 1;
	  val = Fcar (Fcdr (tail));
	  call2 (val, begin, end);
	  return;
	}

      tail = Fcdr (Fcdr (tail));
    }
}

/* Set point in BUFFER to POSITION.  If the target position is in
   an invisible interval which is not displayed with a special glyph,
   skip intervals until we find one.  Point may be at the first
   position of an invisible interval, if it is displayed with a
   special glyph.

   This is the only place `PT' is an lvalue in all of emacs. */

void
set_point (position, buffer)
     register int position;
     register struct buffer *buffer;
{
  register INTERVAL to, from, target;
  register int iposition = position;
  int buffer_point;
  register Lisp_Object obj;
  int backwards = (position < BUF_PT (buffer)) ? 1 : 0;

  if (position == buffer->text.pt)
    return;

  if (NULL_INTERVAL_P (buffer->intervals))
    {
      buffer->text.pt = position;
      return;
    }

  /* Perhaps we should just change `position' to the limit. */
  if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
    abort ();

  /* Position Z is really one past the last char in the buffer.  */
  if (position == BUF_Z (buffer))
    iposition = position - 1;

  to = find_interval (buffer->intervals, iposition);
  buffer_point =(BUF_PT (buffer) == BUF_Z (buffer)
		 ? BUF_Z (buffer) - 1
		 : BUF_PT (buffer));
  from = find_interval (buffer->intervals, buffer_point);
  if (NULL_INTERVAL_P (to) || NULL_INTERVAL_P (from))
    abort ();			/* Paranoia */

  /* Moving within an interval */
  if (to == from && INTERVAL_VISIBLE_P (to))
    {
      buffer->text.pt = position;
      return;
    }

  /* Here for the case of moving into another interval. */

  target = to;
  while (! INTERVAL_VISIBLE_P (to) && ! DISPLAY_INVISIBLE_GLYPH (to)
	 && ! NULL_INTERVAL_P (to))
    to = (backwards ? previous_interval (to) : next_interval (to));
  if (NULL_INTERVAL_P (to))
    return;

  /* Here we know we are actually moving to another interval. */
  if (INTERVAL_VISIBLE_P (to))
    {
      /* If we skipped some intervals, go to the closest point
         in the interval we've stopped at. */
      if (to != target)
	buffer->text.pt = (backwards
			   ? to->position + LENGTH (to) - 1
			   : to->position);
      else
	buffer->text.pt = position;
    }
  else
    buffer->text.pt = to->position;

  /* We should run point-left and point-entered hooks here, iff the
     two intervals are not equivalent. */
}

/* Check for read-only intervals.  Call the modification hooks if any.
   Check for the range START up to (but not including) TO.

   First all intervals of the region are checked that they are
   modifiable, then all the modification hooks are called in
   lexicographic order. */

void
verify_interval_modification (buf, start, end)
     struct buffer *buf;
     int start, end;
{
  register INTERVAL intervals = buf->intervals;
  register INTERVAL i;
  register Lisp_Object hooks = Qnil;

  if (NULL_INTERVAL_P (intervals))
    return;

  if (start > end)
    {
      int temp = start;
      start = end;
      end = temp;
    }

  if (start == BUF_Z (buf))
    {
      if (BUF_Z (buf) == 1)
	abort ();

      i = find_interval (intervals, start - 1);
      if (! END_HUNGRY_P (i))
	return;
    }
  else
    i = find_interval (intervals, start);

  do
    {
      register Lisp_Object mod_hook;
      if (! INTERVAL_WRITABLE_P (i))
	error ("Attempt to write in a protected interval");
      mod_hook = Fget (Qmodification, i->plist);
      if (! EQ (mod_hook, Qnil))
	hooks = Fcons (mod_hook, hooks);
      i = next_interval (i);
    }
  while (! NULL_INTERVAL_P (i) && i->position <= end);

  hooks = Fnreverse (hooks);
  while (! EQ (hooks, Qnil))
    call2 (Fcar (hooks), i->position, i->position + LENGTH (i) - 1);
}

/* Balance an interval node if the amount of text in its left and right
   subtrees differs by more than the percentage specified by
   `interval-balance-threshold'. */

static INTERVAL
balance_an_interval (i)
     INTERVAL i;
{
  register int total_children_size = (LEFT_TOTAL_LENGTH (i)
				      + RIGHT_TOTAL_LENGTH (i));
  register int threshold = (XFASTINT (interval_balance_threshold)
			    * (total_children_size / 100));

  if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i)
      && (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold)
    return rotate_right (i);

  if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i)
      && (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold)
    return rotate_right (i);

#if 0
  if (LEFT_TOTAL_LENGTH (i) >
      (RIGHT_TOTAL_LENGTH (i) + XINT (interval_balance_threshold)))
    return rotate_right (i);

  if (RIGHT_TOTAL_LENGTH (i) >
      (LEFT_TOTAL_LENGTH (i) + XINT (interval_balance_threshold)))
    return rotate_left (i);
#endif

  return i;
}

/* Balance the interval tree TREE.  Balancing is by weight
   (the amount of text). */

INTERVAL
balance_intervals (tree)
     register INTERVAL tree;
{
  register INTERVAL new_tree;

  if (NULL_INTERVAL_P (tree))
    return NULL_INTERVAL;

  new_tree = tree;
  do
    {
      tree = new_tree;
      new_tree = balance_an_interval (new_tree);
    }
  while (new_tree != tree);

  return new_tree;
}

/* Produce an interval tree reflecting the interval structure in
   TREE from START to START + LENGTH. */

static INTERVAL
copy_intervals (tree, start, length)
     INTERVAL tree;
     int start, length;
{
  register INTERVAL i, new, t;
  register int got;

  if (NULL_INTERVAL_P (tree) || length <= 0)
    return NULL_INTERVAL;

  i = find_interval (tree, start);
  if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
    abort ();

  /* If there is only one interval and it's the default, return nil. */
  if ((start - i->position + 1 + length) < LENGTH (i)
      && DEFAULT_INTERVAL_P (i))
    return NULL_INTERVAL;

  new = make_interval ();
  new->position = 1;
  got = (LENGTH (i) - (start - i->position));
  new->total_length = got;
  copy_properties (i, new);

  t = new;
  while (got < length)
    {
      i = next_interval (i);
      t->right = make_interval ();
      t->right->parent = t;
      t->right->position = t->position + got - 1;

      t = t->right;
      t->total_length = length - got;
      copy_properties (i, t);
      got += LENGTH (i);
    }

  if (got > length)
    t->total_length -= (got - length);

  return balance_intervals (new);
}

/* Give buffer SINK the properties of buffer SOURCE from POSITION
   to END.  The properties are attached to SINK starting at position AT.

   No range checking is done. */

void
insert_interval_copy (source, position, end, sink, at)
     struct buffer *source, *sink;
     register int position, end, at;
{
  INTERVAL interval_copy = copy_intervals (source->intervals,
					   position, end - position);
  graft_intervals_into_buffer (interval_copy, at, sink);
}

/* Give STRING the properties of BUFFER from POSITION to LENGTH. */

void
copy_intervals_to_string (string, buffer, position, length)
     Lisp_Object string, buffer;
     int position, length;
{
  INTERVAL interval_copy = copy_intervals (XBUFFER (buffer)->intervals,
					   position, length);
  if (NULL_INTERVAL_P (interval_copy))
    return;

  interval_copy->parent = (INTERVAL) string;
  XSTRING (string)->intervals = interval_copy;
}

INTERVAL
make_string_interval (string, start, length)
     struct Lisp_String *string;
     int start, length;
{
  if (start < 1 || start > string->size)
    error ("Interval index out of range");
  if (length < 1 || length > string->size - start + 1)
    error ("Interval won't fit");

  if (length == 0)
    return NULL_INTERVAL;

  return make_new_interval (string->intervals, start, length);
}

/* Create an interval of length LENGTH in buffer BUF at position START.  */

INTERVAL
make_buffer_interval (buf, start, length)
     struct buffer *buf;
     int start, length;
{
  if (start < BUF_BEG (buf) || start > BUF_Z (buf))
    error ("Interval index out of range");
  if (length < 1 || length > BUF_Z (buf) - start)
    error ("Interval won't fit");

  if (length == 0)
    return NULL_INTERVAL;

  return make_new_interval (buf->intervals, start, length);
}