unexmacosx.c 35.9 KB
Newer Older
1
/* Dump Emacs in Mach-O format for use on Mac OS X.
2
   Copyright (C) 2001, 2002, 2003, 2004, 2005,
Glenn Morris's avatar
Glenn Morris committed
3
                 2006, 2007 Free Software Foundation, Inc.
4 5 6 7 8

This file is part of GNU Emacs.

GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
9
the Free Software Foundation; either version 3, or (at your option)
10 11 12 13 14 15 16 17 18
any later version.

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING.  If not, write to
Lute Kamstra's avatar
Lute Kamstra committed
19 20
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

/* Contributed by Andrew Choi (akochoi@mac.com).  */

/* Documentation note.

   Consult the following documents/files for a description of the
   Mach-O format: the file loader.h, man pages for Mach-O and ld, old
   NEXTSTEP documents of the Mach-O format.  The tool otool dumps the
   mach header (-h option) and the load commands (-l option) in a
   Mach-O file.  The tool nm on Mac OS X displays the symbol table in
   a Mach-O file.  For examples of unexec for the Mach-O format, see
   the file unexnext.c in the GNU Emacs distribution, the file
   unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
   the Darwin port of XEmacs 21.1.  Also the Darwin Libc source
   contains the source code for malloc_freezedry and malloc_jumpstart.
   Read that to see what they do.  This file was written completely
   from scratch, making use of information from the above sources.  */

/* The Mac OS X implementation of unexec makes use of Darwin's `zone'
   memory allocator.  All calls to malloc, realloc, and free in Emacs
   are redirected to unexec_malloc, unexec_realloc, and unexec_free in
   this file.  When temacs is run, all memory requests are handled in
   the zone EmacsZone.  The Darwin memory allocator library calls
   maintain the data structures to manage this zone.  Dumping writes
   its contents to data segments of the executable file.  When emacs
   is run, the loader recreates the contents of the zone in memory.
   However since the initialization routine of the zone memory
   allocator is run again, this `zone' can no longer be used as a
   heap.  That is why emacs uses the ordinary malloc system call to
   allocate memory.  Also, when a block of memory needs to be
   reallocated and the new size is larger than the old one, a new
   block must be obtained by malloc and the old contents copied to
   it.  */

/* Peculiarity of the Mach-O files generated by ld in Mac OS X
   (possible causes of future bugs if changed).

   The file offset of the start of the __TEXT segment is zero.  Since
   the Mach header and load commands are located at the beginning of a
   Mach-O file, copying the contents of the __TEXT segment from the
   input file overwrites them in the output file.  Despite this,
   unexec works fine as written below because the segment load command
   for __TEXT appears, and is therefore processed, before all other
   load commands except the segment load command for __PAGEZERO, which
   remains unchanged.

   Although the file offset of the start of the __TEXT segment is
   zero, none of the sections it contains actually start there.  In
   fact, the earliest one starts a few hundred bytes beyond the end of
   the last load command.  The linker option -headerpad controls the
   minimum size of this padding.  Its setting can be changed in
72 73 74 75
   s/darwin.h.  A value of 0x690, e.g., leaves room for 30 additional
   load commands for the newly created __DATA segments (at 56 bytes
   each).  Unexec fails if there is not enough room for these new
   segments.
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

   The __TEXT segment contains the sections __text, __cstring,
   __picsymbol_stub, and __const and the __DATA segment contains the
   sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
   and __common.  The other segments do not contain any sections.
   These sections are copied from the input file to the output file,
   except for __data, __bss, and __common, which are dumped from
   memory.  The types of the sections __bss and __common are changed
   from S_ZEROFILL to S_REGULAR.  Note that the number of sections and
   their relative order in the input and output files remain
   unchanged.  Otherwise all n_sect fields in the nlist records in the
   symbol table (specified by the LC_SYMTAB load command) will have to
   be changed accordingly.
*/

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <stdarg.h>
#include <sys/types.h>
#include <unistd.h>
#include <mach/mach.h>
#include <mach-o/loader.h>
99 100 101 102
#include <mach-o/reloc.h>
#if defined (__ppc__)
#include <mach-o/ppc/reloc.h>
#endif
103 104 105 106 107
#include <config.h>
#undef malloc
#undef realloc
#undef free
#ifdef HAVE_MALLOC_MALLOC_H
108 109
#include <malloc/malloc.h>
#else
110
#include <objc/malloc.h>
111 112
#endif

YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
113 114
#include <assert.h>

115 116 117 118 119 120 121 122 123 124 125 126 127 128
#ifdef _LP64
#define mach_header			mach_header_64
#define segment_command			segment_command_64
#undef  VM_REGION_BASIC_INFO_COUNT
#define VM_REGION_BASIC_INFO_COUNT	VM_REGION_BASIC_INFO_COUNT_64
#undef  VM_REGION_BASIC_INFO
#define VM_REGION_BASIC_INFO		VM_REGION_BASIC_INFO_64
#undef  LC_SEGMENT
#define LC_SEGMENT			LC_SEGMENT_64
#define vm_region			vm_region_64
#define section				section_64
#undef MH_MAGIC
#define MH_MAGIC			MH_MAGIC_64
#endif
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

#define VERBOSE 1

/* Size of buffer used to copy data from the input file to the output
   file in function unexec_copy.  */
#define UNEXEC_COPY_BUFSZ 1024

/* Regions with memory addresses above this value are assumed to be
   mapped to dynamically loaded libraries and will not be dumped.  */
#define VM_DATA_TOP (20 * 1024 * 1024)

/* Type of an element on the list of regions to be dumped.  */
struct region_t {
  vm_address_t address;
  vm_size_t size;
  vm_prot_t protection;
  vm_prot_t max_protection;

  struct region_t *next;
};

/* Head and tail of the list of regions to be dumped.  */
151 152
static struct region_t *region_list_head = 0;
static struct region_t *region_list_tail = 0;
153 154

/* Pointer to array of load commands.  */
155
static struct load_command **lca;
156 157

/* Number of load commands.  */
158
static int nlc;
159 160 161 162

/* The highest VM address of segments loaded by the input file.
   Regions with addresses beyond this are assumed to be allocated
   dynamically and thus require dumping.  */
163
static vm_address_t infile_lc_highest_addr = 0;
164 165 166 167 168 169

/* The lowest file offset used by the all sections in the __TEXT
   segments.  This leaves room at the beginning of the file to store
   the Mach-O header.  Check this value against header size to ensure
   the added load commands for the new __DATA segments did not
   overwrite any of the sections in the __TEXT segment.  */
170
static unsigned long text_seg_lowest_offset = 0x10000000;
171 172

/* Mach header.  */
173
static struct mach_header mh;
174 175

/* Offset at which the next load command should be written.  */
176
static unsigned long curr_header_offset = sizeof (struct mach_header);
177

178 179 180 181 182
/* Offset at which the next segment should be written.  */
static unsigned long curr_file_offset = 0;

static unsigned long pagesize;
#define ROUNDUP_TO_PAGE_BOUNDARY(x)	(((x) + pagesize - 1) & ~(pagesize - 1))
183

184
static int infd, outfd;
185

186
static int in_dumped_exec = 0;
187

188
static malloc_zone_t *emacs_zone;
189

190
/* file offset of input file's data segment */
191
static off_t data_segment_old_fileoff = 0;
192

193
static struct segment_command *data_segment_scp;
194

195
/* Read N bytes from infd into memory starting at address DEST.
196 197 198 199 200 201 202
   Return true if successful, false otherwise.  */
static int
unexec_read (void *dest, size_t n)
{
  return n == read (infd, dest, n);
}

203 204 205
/* Write COUNT bytes from memory starting at address SRC to outfd
   starting at offset DEST.  Return true if successful, false
   otherwise.  */
206 207 208 209 210 211 212 213 214
static int
unexec_write (off_t dest, const void *src, size_t count)
{
  if (lseek (outfd, dest, SEEK_SET) != dest)
    return 0;

  return write (outfd, src, count) == count;
}

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
/* Write COUNT bytes of zeros to outfd starting at offset DEST.
   Return true if successful, false otherwise.  */
static int
unexec_write_zero (off_t dest, size_t count)
{
  char buf[UNEXEC_COPY_BUFSZ];
  ssize_t bytes;

  bzero (buf, UNEXEC_COPY_BUFSZ);
  if (lseek (outfd, dest, SEEK_SET) != dest)
    return 0;

  while (count > 0)
    {
      bytes = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
      if (write (outfd, buf, bytes) != bytes)
	return 0;
      count -= bytes;
    }

  return 1;
}

/* Copy COUNT bytes from starting offset SRC in infd to starting
   offset DEST in outfd.  Return true if successful, false
   otherwise.  */
241 242 243 244
static int
unexec_copy (off_t dest, off_t src, ssize_t count)
{
  ssize_t bytes_read;
245
  ssize_t bytes_to_read;
246 247 248 249 250 251 252 253 254 255 256

  char buf[UNEXEC_COPY_BUFSZ];

  if (lseek (infd, src, SEEK_SET) != src)
    return 0;

  if (lseek (outfd, dest, SEEK_SET) != dest)
    return 0;

  while (count > 0)
    {
257 258
      bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
      bytes_read = read (infd, buf, bytes_to_read);
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
      if (bytes_read <= 0)
	return 0;
      if (write (outfd, buf, bytes_read) != bytes_read)
	return 0;
      count -= bytes_read;
    }

  return 1;
}

/* Debugging and informational messages routines.  */

static void
unexec_error (char *format, ...)
{
  va_list ap;

  va_start (ap, format);
  fprintf (stderr, "unexec: ");
  vfprintf (stderr, format, ap);
  fprintf (stderr, "\n");
  va_end (ap);
  exit (1);
}

static void
print_prot (vm_prot_t prot)
{
  if (prot == VM_PROT_NONE)
    printf ("none");
  else
    {
      putchar (prot & VM_PROT_READ ? 'r' : ' ');
      putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
      putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
      putchar (' ');
    }
}

static void
print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
	      vm_prot_t max_prot)
{
302
  printf ("%#10lx %#8lx ", (long) address, (long) size);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
  print_prot (prot);
  putchar (' ');
  print_prot (max_prot);
  putchar ('\n');
}

static void
print_region_list ()
{
  struct region_t *r;

  printf ("   address     size prot maxp\n");

  for (r = region_list_head; r; r = r->next)
    print_region (r->address, r->size, r->protection, r->max_protection);
}

320
static void
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
print_regions ()
{
  task_t target_task = mach_task_self ();
  vm_address_t address = (vm_address_t) 0;
  vm_size_t size;
  struct vm_region_basic_info info;
  mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
  mach_port_t object_name;

  printf ("   address     size prot maxp\n");

  while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
		    (vm_region_info_t) &info, &info_count, &object_name)
	 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
    {
      print_region (address, size, info.protection, info.max_protection);

      if (object_name != MACH_PORT_NULL)
	mach_port_deallocate (target_task, object_name);
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
      address += size;
    }
}

/* Build the list of regions that need to be dumped.  Regions with
   addresses above VM_DATA_TOP are omitted.  Adjacent regions with
   identical protection are merged.  Note that non-writable regions
   cannot be omitted because they some regions created at run time are
   read-only.  */
static void
build_region_list ()
{
  task_t target_task = mach_task_self ();
  vm_address_t address = (vm_address_t) 0;
  vm_size_t size;
  struct vm_region_basic_info info;
  mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
  mach_port_t object_name;
  struct region_t *r;

#if VERBOSE
  printf ("--- List of All Regions ---\n");
  printf ("   address     size prot maxp\n");
#endif

  while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
		    (vm_region_info_t) &info, &info_count, &object_name)
	 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
    {
      /* Done when we reach addresses of shared libraries, which are
	 loaded in high memory.  */
      if (address >= VM_DATA_TOP)
	break;

#if VERBOSE
      print_region (address, size, info.protection, info.max_protection);
#endif

      /* If a region immediately follows the previous one (the one
	 most recently added to the list) and has identical
	 protection, merge it with the latter.  Otherwise create a
	 new list element for it.  */
      if (region_list_tail
	  && info.protection == region_list_tail->protection
	  && info.max_protection == region_list_tail->max_protection
	  && region_list_tail->address + region_list_tail->size == address)
	{
	  region_list_tail->size += size;
	}
      else
	{
	  r = (struct region_t *) malloc (sizeof (struct region_t));
393

394 395
	  if (!r)
	    unexec_error ("cannot allocate region structure");
396

397 398 399 400
	  r->address = address;
	  r->size = size;
	  r->protection = info.protection;
	  r->max_protection = info.max_protection;
401

402 403 404 405 406 407 408 409 410 411 412
	  r->next = 0;
	  if (region_list_head == 0)
	    {
	      region_list_head = r;
	      region_list_tail = r;
	    }
	  else
	    {
	      region_list_tail->next = r;
	      region_list_tail = r;
	    }
413

414 415 416 417 418
	  /* Deallocate (unused) object name returned by
	     vm_region.  */
	  if (object_name != MACH_PORT_NULL)
	    mach_port_deallocate (target_task, object_name);
	}
419

420 421 422 423 424 425 426 427
      address += size;
    }

  printf ("--- List of Regions to be Dumped ---\n");
  print_region_list ();
}


428
#define MAX_UNEXEC_REGIONS 400
429

430 431 432 433 434 435
static int num_unexec_regions;
typedef struct {
  vm_range_t range;
  vm_size_t filesize;
} unexec_region_info;
static unexec_region_info unexec_regions[MAX_UNEXEC_REGIONS];
436 437 438 439 440

static void
unexec_regions_recorder (task_t task, void *rr, unsigned type,
			 vm_range_t *ranges, unsigned num)
{
441 442 443
  vm_address_t p;
  vm_size_t filesize;

444 445
  while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
    {
446 447 448 449 450 451 452 453 454 455 456 457 458 459
      /* Subtract the size of trailing null pages from filesize.  It
	 can be smaller than vmsize in segment commands.  In such a
	 case, trailing pages are initialized with zeros.  */
      for (p = ranges->address + ranges->size; p > ranges->address;
	   p -= sizeof (int))
	if (*(((int *) p)-1))
	  break;
      filesize = ROUNDUP_TO_PAGE_BOUNDARY (p - ranges->address);
      assert (filesize <= ranges->size);

      unexec_regions[num_unexec_regions].filesize = filesize;
      unexec_regions[num_unexec_regions++].range = *ranges;
      printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges->address),
	      (long) filesize, (long) (ranges->size));
460 461 462 463 464 465 466 467 468 469 470
      ranges++; num--;
    }
}

static kern_return_t
unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
{
  *ptr = (void *) address;
  return KERN_SUCCESS;
}

471
static void
472 473 474 475 476 477 478 479 480 481
find_emacs_zone_regions ()
{
  num_unexec_regions = 0;

  emacs_zone->introspect->enumerator (mach_task_self(), 0,
				      MALLOC_PTR_REGION_RANGE_TYPE
				      | MALLOC_ADMIN_REGION_RANGE_TYPE,
				      (vm_address_t) emacs_zone,
				      unexec_reader,
				      unexec_regions_recorder);
482 483 484

  if (num_unexec_regions == MAX_UNEXEC_REGIONS)
    unexec_error ("find_emacs_zone_regions: too many regions");
485 486
}

487 488 489
static int
unexec_regions_sort_compare (const void *a, const void *b)
{
490 491
  vm_address_t aa = ((unexec_region_info *) a)->range.address;
  vm_address_t bb = ((unexec_region_info *) b)->range.address;
492 493 494 495 496 497 498 499 500 501 502 503 504

  if (aa < bb)
    return -1;
  else if (aa > bb)
    return 1;
  else
    return 0;
}

static void
unexec_regions_merge ()
{
  int i, n;
505
  unexec_region_info r;
506 507 508 509 510 511 512

  qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
	 &unexec_regions_sort_compare);
  n = 0;
  r = unexec_regions[0];
  for (i = 1; i < num_unexec_regions; i++)
    {
513 514
      if (r.range.address + r.range.size == unexec_regions[i].range.address
	  && r.range.size - r.filesize < 2 * pagesize)
515
	{
516 517
	  r.filesize = r.range.size + unexec_regions[i].filesize;
	  r.range.size += unexec_regions[i].range.size;
518 519 520 521 522 523 524 525 526 527 528
	}
      else
	{
	  unexec_regions[n++] = r;
	  r = unexec_regions[i];
	}
    }
  unexec_regions[n++] = r;
  num_unexec_regions = n;
}

529 530 531 532 533 534 535 536 537

/* More informational messages routines.  */

static void
print_load_command_name (int lc)
{
  switch (lc)
    {
    case LC_SEGMENT:
538
#ifndef _LP64
539
      printf ("LC_SEGMENT       ");
540 541 542
#else
      printf ("LC_SEGMENT_64    ");
#endif
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
      break;
    case LC_LOAD_DYLINKER:
      printf ("LC_LOAD_DYLINKER ");
      break;
    case LC_LOAD_DYLIB:
      printf ("LC_LOAD_DYLIB    ");
      break;
    case LC_SYMTAB:
      printf ("LC_SYMTAB        ");
      break;
    case LC_DYSYMTAB:
      printf ("LC_DYSYMTAB      ");
      break;
    case LC_UNIXTHREAD:
      printf ("LC_UNIXTHREAD    ");
      break;
    case LC_PREBOUND_DYLIB:
      printf ("LC_PREBOUND_DYLIB");
      break;
    case LC_TWOLEVEL_HINTS:
      printf ("LC_TWOLEVEL_HINTS");
      break;
    default:
      printf ("unknown          ");
    }
}

static void
print_load_command (struct load_command *lc)
{
  print_load_command_name (lc->cmd);
  printf ("%8d", lc->cmdsize);

  if (lc->cmd == LC_SEGMENT)
    {
      struct segment_command *scp;
      struct section *sectp;
      int j;

      scp = (struct segment_command *) lc;
583 584
      printf (" %-16.16s %#10lx %#8lx\n",
	      scp->segname, (long) (scp->vmaddr), (long) (scp->vmsize));
585 586 587 588

      sectp = (struct section *) (scp + 1);
      for (j = 0; j < scp->nsects; j++)
	{
589 590
	  printf ("                           %-16.16s %#10lx %#8lx\n",
		  sectp->sectname, (long) (sectp->addr), (long) (sectp->size));
591 592 593 594 595 596 597 598 599 600 601 602 603
	  sectp++;
	}
    }
  else
    printf ("\n");
}

/* Read header and load commands from input file.  Store the latter in
   the global array lca.  Store the total number of load commands in
   global variable nlc.  */
static void
read_load_commands ()
{
604
  int i;
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

  if (!unexec_read (&mh, sizeof (struct mach_header)))
    unexec_error ("cannot read mach-o header");

  if (mh.magic != MH_MAGIC)
    unexec_error ("input file not in Mach-O format");

  if (mh.filetype != MH_EXECUTE)
    unexec_error ("input Mach-O file is not an executable object file");

#if VERBOSE
  printf ("--- Header Information ---\n");
  printf ("Magic = 0x%08x\n", mh.magic);
  printf ("CPUType = %d\n", mh.cputype);
  printf ("CPUSubType = %d\n", mh.cpusubtype);
  printf ("FileType = 0x%x\n", mh.filetype);
  printf ("NCmds = %d\n", mh.ncmds);
  printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
  printf ("Flags = 0x%08x\n", mh.flags);
#endif

  nlc = mh.ncmds;
  lca = (struct load_command **) malloc (nlc * sizeof (struct load_command *));
628

629 630 631 632 633 634 635 636 637 638 639 640 641 642
  for (i = 0; i < nlc; i++)
    {
      struct load_command lc;
      /* Load commands are variable-size: so read the command type and
	 size first and then read the rest.  */
      if (!unexec_read (&lc, sizeof (struct load_command)))
        unexec_error ("cannot read load command");
      lca[i] = (struct load_command *) malloc (lc.cmdsize);
      memcpy (lca[i], &lc, sizeof (struct load_command));
      if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
        unexec_error ("cannot read content of load command");
      if (lc.cmd == LC_SEGMENT)
	{
	  struct segment_command *scp = (struct segment_command *) lca[i];
643

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	  if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
	    infile_lc_highest_addr = scp->vmaddr + scp->vmsize;

	  if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
	    {
	      struct section *sectp = (struct section *) (scp + 1);
	      int j;

	      for (j = 0; j < scp->nsects; j++)
		if (sectp->offset < text_seg_lowest_offset)
		  text_seg_lowest_offset = sectp->offset;
	    }
	}
    }

  printf ("Highest address of load commands in input file: %#8x\n",
	  infile_lc_highest_addr);

662
  printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
	  text_seg_lowest_offset);

  printf ("--- List of Load Commands in Input File ---\n");
  printf ("# cmd              cmdsize name                address     size\n");

  for (i = 0; i < nlc; i++)
    {
      printf ("%1d ", i);
      print_load_command (lca[i]);
    }
}

/* Copy a LC_SEGMENT load command other than the __DATA segment from
   the input file to the output file, adjusting the file offset of the
   segment and the file offsets of sections contained in it.  */
static void
copy_segment (struct load_command *lc)
{
  struct segment_command *scp = (struct segment_command *) lc;
  unsigned long old_fileoff = scp->fileoff;
  struct section *sectp;
  int j;

686
  scp->fileoff = curr_file_offset;
687 688 689 690

  sectp = (struct section *) (scp + 1);
  for (j = 0; j < scp->nsects; j++)
    {
691
      sectp->offset += curr_file_offset - old_fileoff;
692 693 694
      sectp++;
    }

695 696 697
  printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
	  scp->segname, (long) (scp->fileoff), (long) (scp->filesize),
	  (long) (scp->vmsize), (long) (scp->vmaddr));
698 699 700

  if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
    unexec_error ("cannot copy segment from input to output file");
701 702
  curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
  if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
    unexec_error ("cannot write load command to header");

  curr_header_offset += lc->cmdsize;
}

/* Copy a LC_SEGMENT load command for the __DATA segment in the input
   file to the output file.  We assume that only one such segment load
   command exists in the input file and it contains the sections
   __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
   __dyld.  The first three of these should be dumped from memory and
   the rest should be copied from the input file.  Note that the
   sections __bss and __common contain no data in the input file
   because their flag fields have the value S_ZEROFILL.  Dumping these
   from memory makes it necessary to adjust file offset fields in
   subsequently dumped load commands.  Then, create new __DATA segment
   load commands for regions on the region list other than the one
   corresponding to the __DATA segment in the input file.  */
static void
copy_data_segment (struct load_command *lc)
{
  struct segment_command *scp = (struct segment_command *) lc;
  struct section *sectp;
  int j;
727 728 729 730 731 732 733 734
  unsigned long header_offset, old_file_offset;

  /* The new filesize of the segment is set to its vmsize because data
     blocks for segments must start at region boundaries.  Note that
     this may leave unused locations at the end of the segment data
     block because the total of the sizes of all sections in the
     segment is generally smaller than vmsize.  */
  scp->filesize = scp->vmsize;
735

736 737 738
  printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
	  scp->segname, curr_file_offset, (long)(scp->filesize),
	  (long)(scp->vmsize), (long) (scp->vmaddr));
739 740 741 742 743 744 745 746 747

  /* Offsets in the output file for writing the next section structure
     and segment data block, respectively.  */
  header_offset = curr_header_offset + sizeof (struct segment_command);

  sectp = (struct section *) (scp + 1);
  for (j = 0; j < scp->nsects; j++)
    {
      old_file_offset = sectp->offset;
748
      sectp->offset = sectp->addr - scp->vmaddr + curr_file_offset;
749 750 751 752 753 754 755 756 757 758 759 760
      /* The __data section is dumped from memory.  The __bss and
	 __common sections are also dumped from memory but their flag
	 fields require changing (from S_ZEROFILL to S_REGULAR).  The
	 other three kinds of sections are just copied from the input
	 file.  */
      if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
	{
	  if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
	    unexec_error ("cannot write section %s", SECT_DATA);
	  if (!unexec_write (header_offset, sectp, sizeof (struct section)))
	    unexec_error ("cannot write section %s's header", SECT_DATA);
	}
761
      else if (strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
762 763 764
	{
	  sectp->flags = S_REGULAR;
	  if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
765
	    unexec_error ("cannot write section %s", sectp->sectname);
766
	  if (!unexec_write (header_offset, sectp, sizeof (struct section)))
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	    unexec_error ("cannot write section %s's header", sectp->sectname);
	}
      else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0)
	{
	  extern char *my_endbss_static;
	  unsigned long my_size;

	  sectp->flags = S_REGULAR;

	  /* Clear uninitialized local variables in statically linked
	     libraries.  In particular, function pointers stored by
	     libSystemStub.a, which is introduced in Mac OS X 10.4 for
	     binary compatibility with respect to long double, are
	     cleared so that they will be reinitialized when the
	     dumped binary is executed on other versions of OS.  */
	  my_size = (unsigned long)my_endbss_static - sectp->addr;
	  if (!(sectp->addr <= (unsigned long)my_endbss_static
		&& my_size <= sectp->size))
	    unexec_error ("my_endbss_static is not in section %s",
			  sectp->sectname);
	  if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
	    unexec_error ("cannot write section %s", sectp->sectname);
	  if (!unexec_write_zero (sectp->offset + my_size,
				  sectp->size - my_size))
	    unexec_error ("cannot write section %s", sectp->sectname);
	  if (!unexec_write (header_offset, sectp, sizeof (struct section)))
	    unexec_error ("cannot write section %s's header", sectp->sectname);
794 795 796
	}
      else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
	       || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
797
	       || strncmp (sectp->sectname, "__la_sym_ptr2", 16) == 0
798
	       || strncmp (sectp->sectname, "__dyld", 16) == 0
799 800
	       || strncmp (sectp->sectname, "__const", 16) == 0
	       || strncmp (sectp->sectname, "__cfstring", 16) == 0)
801 802 803 804 805 806 807 808
	{
	  if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
	    unexec_error ("cannot copy section %s", sectp->sectname);
	  if (!unexec_write (header_offset, sectp, sizeof (struct section)))
	    unexec_error ("cannot write section %s's header", sectp->sectname);
	}
      else
	unexec_error ("unrecognized section name in __DATA segment");
809

810 811 812
      printf ("        section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
	      sectp->sectname, (long) (sectp->offset),
	      (long) (sectp->offset + sectp->size), (long) (sectp->size));
813 814 815 816 817

      header_offset += sizeof (struct section);
      sectp++;
    }

818 819
  curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);

820 821 822 823 824 825 826
  if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
    unexec_error ("cannot write header of __DATA segment");
  curr_header_offset += lc->cmdsize;

  /* Create new __DATA segment load commands for regions on the region
     list that do not corresponding to any segment load commands in
     the input file.
827
  */
828 829 830
  for (j = 0; j < num_unexec_regions; j++)
    {
      struct segment_command sc;
831

832 833 834
      sc.cmd = LC_SEGMENT;
      sc.cmdsize = sizeof (struct segment_command);
      strncpy (sc.segname, SEG_DATA, 16);
835 836
      sc.vmaddr = unexec_regions[j].range.address;
      sc.vmsize = unexec_regions[j].range.size;
837
      sc.fileoff = curr_file_offset;
838
      sc.filesize = unexec_regions[j].filesize;
839 840 841 842
      sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
      sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
      sc.nsects = 0;
      sc.flags = 0;
843

844 845 846
      printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
	      sc.segname, (long) (sc.fileoff), (long) (sc.filesize),
	      (long) (sc.vmsize), (long) (sc.vmaddr));
847

848
      if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.filesize))
849
	unexec_error ("cannot write new __DATA segment");
850
      curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (sc.filesize);
851

852 853 854 855 856 857 858 859 860 861
      if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
	unexec_error ("cannot write new __DATA segment's header");
      curr_header_offset += sc.cmdsize;
      mh.ncmds++;
    }
}

/* Copy a LC_SYMTAB load command from the input file to the output
   file, adjusting the file offset fields.  */
static void
862
copy_symtab (struct load_command *lc, long delta)
863 864 865 866 867 868 869 870 871 872 873 874 875 876
{
  struct symtab_command *stp = (struct symtab_command *) lc;

  stp->symoff += delta;
  stp->stroff += delta;

  printf ("Writing LC_SYMTAB command\n");

  if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
    unexec_error ("cannot write symtab command to header");

  curr_header_offset += lc->cmdsize;
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
/* Fix up relocation entries. */
static void
unrelocate (const char *name, off_t reloff, int nrel)
{
  int i, unreloc_count;
  struct relocation_info reloc_info;
  struct scattered_relocation_info *sc_reloc_info
    = (struct scattered_relocation_info *) &reloc_info;

  for (unreloc_count = 0, i = 0; i < nrel; i++)
    {
      if (lseek (infd, reloff, L_SET) != reloff)
	unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
      if (!unexec_read (&reloc_info, sizeof (reloc_info)))
	unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
      reloff += sizeof (reloc_info);

      if (sc_reloc_info->r_scattered == 0)
	switch (reloc_info.r_type)
	  {
	  case GENERIC_RELOC_VANILLA:
	    if (reloc_info.r_address >= data_segment_scp->vmaddr
		&& reloc_info.r_address < (data_segment_scp->vmaddr
					   + data_segment_scp->vmsize))
	      {
		off_t src_off = data_segment_old_fileoff
		  + reloc_info.r_address - data_segment_scp->vmaddr;
		off_t dst_off = data_segment_scp->fileoff
		  + reloc_info.r_address - data_segment_scp->vmaddr;

		if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
		  unexec_error ("unrelocate: %s:%d cannot copy original value",
				name, i);
		unreloc_count++;
	      }
	    break;
	  default:
	    unexec_error ("unrelocate: %s:%d cannot handle type = %d",
			  name, i, reloc_info.r_type);
	  }
      else
	switch (sc_reloc_info->r_type)
	  {
#if defined (__ppc__)
	  case PPC_RELOC_PB_LA_PTR:
	    /* nothing to do for prebound lazy pointer */
	    break;
#endif
	  default:
	    unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
			  name, i, sc_reloc_info->r_type);
	  }
    }

  if (nrel > 0)
    printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
	    unreloc_count, nrel, name);
}

936 937 938
/* Copy a LC_DYSYMTAB load command from the input file to the output
   file, adjusting the file offset fields.  */
static void
939
copy_dysymtab (struct load_command *lc, long delta)
940 941 942
{
  struct dysymtab_command *dstp = (struct dysymtab_command *) lc;

943 944
  unrelocate ("local", dstp->locreloff, dstp->nlocrel);
  unrelocate ("external", dstp->extreloff, dstp->nextrel);
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964

  if (dstp->nextrel > 0) {
    dstp->extreloff += delta;
  }

  if (dstp->nlocrel > 0) {
    dstp->locreloff += delta;
  }

  if (dstp->nindirectsyms > 0)
    dstp->indirectsymoff += delta;

  printf ("Writing LC_DYSYMTAB command\n");

  if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
    unexec_error ("cannot write symtab command to header");

  curr_header_offset += lc->cmdsize;
}

965 966 967
/* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
   file, adjusting the file offset fields.  */
static void
968
copy_twolevelhints (struct load_command *lc, long delta)
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
{
  struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;

  if (tlhp->nhints > 0) {
    tlhp->offset += delta;
  }

  printf ("Writing LC_TWOLEVEL_HINTS command\n");

  if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
    unexec_error ("cannot write two level hint command to header");

  curr_header_offset += lc->cmdsize;
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/* Copy other kinds of load commands from the input file to the output
   file, ones that do not require adjustments of file offsets.  */
static void
copy_other (struct load_command *lc)
{
  printf ("Writing ");
  print_load_command_name (lc->cmd);
  printf (" command\n");

  if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
    unexec_error ("cannot write symtab command to header");

  curr_header_offset += lc->cmdsize;
}

/* Loop through all load commands and dump them.  Then write the Mach
   header.  */
static void
dump_it ()
{
  int i;
1005
  long linkedit_delta = 0;
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

  printf ("--- Load Commands written to Output File ---\n");

  for (i = 0; i < nlc; i++)
    switch (lca[i]->cmd)
      {
      case LC_SEGMENT:
	{
	  struct segment_command *scp = (struct segment_command *) lca[i];
	  if (strncmp (scp->segname, SEG_DATA, 16) == 0)
	    {
1017 1018
	      /* save data segment file offset and segment_command for
		 unrelocate */
1019 1020 1021
	      if (data_segment_old_fileoff)
		unexec_error ("cannot handle multiple DATA segments"
			      " in input file");
1022 1023 1024
	      data_segment_old_fileoff = scp->fileoff;
	      data_segment_scp = scp;

1025 1026 1027 1028
	      copy_data_segment (lca[i]);
	    }
	  else
	    {
1029 1030 1031 1032 1033 1034 1035 1036
	      if (strncmp (scp->segname, SEG_LINKEDIT, 16) == 0)
		{
		  if (linkedit_delta)
		    unexec_error ("cannot handle multiple LINKEDIT segments"
				  " in input file");
		  linkedit_delta = curr_file_offset - scp->fileoff;
		}

1037 1038 1039 1040 1041
	      copy_segment (lca[i]);
	    }
	}
	break;
      case LC_SYMTAB:
1042
	copy_symtab (lca[i], linkedit_delta);
1043 1044
	break;
      case LC_DYSYMTAB:
1045
	copy_dysymtab (lca[i], linkedit_delta);
1046
	break;
1047
      case LC_TWOLEVEL_HINTS:
1048
	copy_twolevelhints (lca[i], linkedit_delta);
1049
	break;
1050 1051 1052 1053 1054 1055 1056 1057
      default:
	copy_other (lca[i]);
	break;
      }

  if (curr_header_offset > text_seg_lowest_offset)
    unexec_error ("not enough room for load commands for new __DATA segments");

1058
  printf ("%ld unused bytes follow Mach-O header\n",
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	  text_seg_lowest_offset - curr_header_offset);

  mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
  if (!unexec_write (0, &mh, sizeof (struct mach_header)))
    unexec_error ("cannot write final header contents");
}

/* Take a snapshot of Emacs and make a Mach-O format executable file
   from it.  The file names of the output and input files are outfile
   and infile, respectively.  The three other parameters are
   ignored.  */
void
unexec (char *outfile, char *infile, void *start_data, void *start_bss,
        void *entry_address)
{
1074 1075 1076
  if (in_dumped_exec)
    unexec_error ("Unexec from a dumped executable is not supported.");

1077
  pagesize = getpagesize ();
1078 1079 1080 1081 1082
  infd = open (infile, O_RDONLY, 0);
  if (infd < 0)
    {
      unexec_error ("cannot open input file `%s'", infile);
    }
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
  outfd = open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0755);
  if (outfd < 0)
    {
      close (infd);
      unexec_error ("cannot open output file `%s'", outfile);
    }

  build_region_list ();
  read_load_commands ();

  find_emacs_zone_regions ();
1095
  unexec_regions_merge ();
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

  in_dumped_exec = 1;

  dump_it ();

  close (outfd);
}


void
unexec_init_emacs_zone ()
{
  emacs_zone = malloc_create_zone (0, 0);
  malloc_set_zone_name (emacs_zone, "EmacsZone");
}

YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
#ifndef MACOSX_MALLOC_MULT16
#define MACOSX_MALLOC_MULT16 1
#endif

typedef struct unexec_malloc_header {
  union {
    char c[8];
    size_t size;
  } u;
} unexec_malloc_header_t;

#if MACOSX_MALLOC_MULT16

#define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)

#else

1129 1130 1131 1132 1133 1134
int
ptr_in_unexec_regions (void *ptr)
{
  int i;

  for (i = 0; i < num_unexec_regions; i++)
1135 1136
    if ((vm_address_t) ptr - unexec_regions[i].range.address
	< unexec_regions[i].range.size)
1137 1138 1139 1140 1141
      return 1;

  return 0;
}

YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1142 1143
#endif

1144 1145 1146 1147
void *
unexec_malloc (size_t size)
{
  if (in_dumped_exec)
YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1148 1149 1150 1151 1152 1153 1154 1155 1156
    {
      void *p;

      p = malloc (size);
#if MACOSX_MALLOC_MULT16
      assert (((vm_address_t) p % 16) == 0);
#endif
      return p;
    }
1157
  else
YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    {
      unexec_malloc_header_t *ptr;

      ptr = (unexec_malloc_header_t *)
	malloc_zone_malloc (emacs_zone, size + sizeof (unexec_malloc_header_t));
      ptr->u.size = size;
      ptr++;
#if MACOSX_MALLOC_MULT16
      assert (((vm_address_t) ptr % 16) == 8);
#endif
      return (void *) ptr;
    }
1170 1171 1172 1173 1174 1175
}

void *
unexec_realloc (void *old_ptr, size_t new_size)
{
  if (in_dumped_exec)
YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1176 1177 1178 1179 1180 1181 1182 1183
    {
      void *p;

      if (ptr_in_unexec_regions (old_ptr))
	{
	  size_t old_size = ((unexec_malloc_header_t *) old_ptr)[-1].u.size;
	  size_t size = new_size > old_size ? old_size : new_size;

1184
	  p = (size_t *) malloc (new_size);
YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	  if (size)
	    memcpy (p, old_ptr, size);
	}
      else
	{
	  p = realloc (old_ptr, new_size);
	}
#if MACOSX_MALLOC_MULT16
      assert (((vm_address_t) p % 16) == 0);
#endif
      return p;
    }
1197
  else
YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    {
      unexec_malloc_header_t *ptr;

      ptr = (unexec_malloc_header_t *)
	malloc_zone_realloc (emacs_zone, (unexec_malloc_header_t *) old_ptr - 1,
			     new_size + sizeof (unexec_malloc_header_t));
      ptr->u.size = new_size;
      ptr++;
#if MACOSX_MALLOC_MULT16
      assert (((vm_address_t) ptr % 16) == 8);
#endif
      return (void *) ptr;
    }
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
}

void
unexec_free (void *ptr)
{
  if (in_dumped_exec)
    {
      if (!ptr_in_unexec_regions (ptr))
	free (ptr);
    }
  else
YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1222
    malloc_zone_free (emacs_zone, (unexec_malloc_header_t *) ptr - 1);
1223
}
Miles Bader's avatar
Miles Bader committed
1224 1225 1226

/* arch-tag: 1a784f7b-a184-4c4f-9544-da8619593d72
   (do not change this comment) */