unexmacosx.c 39.7 KB
Newer Older
1
/* Dump Emacs in Mach-O format for use on Mac OS X.
2
   Copyright (C) 2001, 2002, 2003, 2004, 2005,
3
                 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 5 6

This file is part of GNU Emacs.

7
GNU Emacs is free software: you can redistribute it and/or modify
8
it under the terms of the GNU General Public License as published by
9 10
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
11 12 13 14 15 16 17

GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
18
along with GNU Emacs.  If not, see <http://www.gnu.org/licenses/>.  */
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

/* Contributed by Andrew Choi (akochoi@mac.com).  */

/* Documentation note.

   Consult the following documents/files for a description of the
   Mach-O format: the file loader.h, man pages for Mach-O and ld, old
   NEXTSTEP documents of the Mach-O format.  The tool otool dumps the
   mach header (-h option) and the load commands (-l option) in a
   Mach-O file.  The tool nm on Mac OS X displays the symbol table in
   a Mach-O file.  For examples of unexec for the Mach-O format, see
   the file unexnext.c in the GNU Emacs distribution, the file
   unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
   the Darwin port of XEmacs 21.1.  Also the Darwin Libc source
   contains the source code for malloc_freezedry and malloc_jumpstart.
   Read that to see what they do.  This file was written completely
   from scratch, making use of information from the above sources.  */

/* The Mac OS X implementation of unexec makes use of Darwin's `zone'
   memory allocator.  All calls to malloc, realloc, and free in Emacs
   are redirected to unexec_malloc, unexec_realloc, and unexec_free in
   this file.  When temacs is run, all memory requests are handled in
   the zone EmacsZone.  The Darwin memory allocator library calls
   maintain the data structures to manage this zone.  Dumping writes
   its contents to data segments of the executable file.  When emacs
   is run, the loader recreates the contents of the zone in memory.
   However since the initialization routine of the zone memory
   allocator is run again, this `zone' can no longer be used as a
   heap.  That is why emacs uses the ordinary malloc system call to
   allocate memory.  Also, when a block of memory needs to be
   reallocated and the new size is larger than the old one, a new
   block must be obtained by malloc and the old contents copied to
   it.  */

/* Peculiarity of the Mach-O files generated by ld in Mac OS X
   (possible causes of future bugs if changed).

   The file offset of the start of the __TEXT segment is zero.  Since
   the Mach header and load commands are located at the beginning of a
   Mach-O file, copying the contents of the __TEXT segment from the
   input file overwrites them in the output file.  Despite this,
   unexec works fine as written below because the segment load command
   for __TEXT appears, and is therefore processed, before all other
   load commands except the segment load command for __PAGEZERO, which
   remains unchanged.

   Although the file offset of the start of the __TEXT segment is
   zero, none of the sections it contains actually start there.  In
   fact, the earliest one starts a few hundred bytes beyond the end of
   the last load command.  The linker option -headerpad controls the
   minimum size of this padding.  Its setting can be changed in
70 71 72 73
   s/darwin.h.  A value of 0x690, e.g., leaves room for 30 additional
   load commands for the newly created __DATA segments (at 56 bytes
   each).  Unexec fails if there is not enough room for these new
   segments.
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

   The __TEXT segment contains the sections __text, __cstring,
   __picsymbol_stub, and __const and the __DATA segment contains the
   sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
   and __common.  The other segments do not contain any sections.
   These sections are copied from the input file to the output file,
   except for __data, __bss, and __common, which are dumped from
   memory.  The types of the sections __bss and __common are changed
   from S_ZEROFILL to S_REGULAR.  Note that the number of sections and
   their relative order in the input and output files remain
   unchanged.  Otherwise all n_sect fields in the nlist records in the
   symbol table (specified by the LC_SYMTAB load command) will have to
   be changed accordingly.
*/

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <stdarg.h>
#include <sys/types.h>
#include <unistd.h>
#include <mach/mach.h>
#include <mach-o/loader.h>
97 98 99 100
#include <mach-o/reloc.h>
#if defined (__ppc__)
#include <mach-o/ppc/reloc.h>
#endif
101 102 103 104 105
#include <config.h>
#undef malloc
#undef realloc
#undef free
#ifdef HAVE_MALLOC_MALLOC_H
106 107
#include <malloc/malloc.h>
#else
108
#include <objc/malloc.h>
109 110
#endif

YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
111 112
#include <assert.h>

113 114 115 116 117 118 119 120 121 122 123 124 125 126
#ifdef _LP64
#define mach_header			mach_header_64
#define segment_command			segment_command_64
#undef  VM_REGION_BASIC_INFO_COUNT
#define VM_REGION_BASIC_INFO_COUNT	VM_REGION_BASIC_INFO_COUNT_64
#undef  VM_REGION_BASIC_INFO
#define VM_REGION_BASIC_INFO		VM_REGION_BASIC_INFO_64
#undef  LC_SEGMENT
#define LC_SEGMENT			LC_SEGMENT_64
#define vm_region			vm_region_64
#define section				section_64
#undef MH_MAGIC
#define MH_MAGIC			MH_MAGIC_64
#endif
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

#define VERBOSE 1

/* Size of buffer used to copy data from the input file to the output
   file in function unexec_copy.  */
#define UNEXEC_COPY_BUFSZ 1024

/* Regions with memory addresses above this value are assumed to be
   mapped to dynamically loaded libraries and will not be dumped.  */
#define VM_DATA_TOP (20 * 1024 * 1024)

/* Type of an element on the list of regions to be dumped.  */
struct region_t {
  vm_address_t address;
  vm_size_t size;
  vm_prot_t protection;
  vm_prot_t max_protection;

  struct region_t *next;
};

/* Head and tail of the list of regions to be dumped.  */
149 150
static struct region_t *region_list_head = 0;
static struct region_t *region_list_tail = 0;
151 152

/* Pointer to array of load commands.  */
153
static struct load_command **lca;
154 155

/* Number of load commands.  */
156
static int nlc;
157 158 159 160

/* The highest VM address of segments loaded by the input file.
   Regions with addresses beyond this are assumed to be allocated
   dynamically and thus require dumping.  */
161
static vm_address_t infile_lc_highest_addr = 0;
162 163 164 165 166 167

/* The lowest file offset used by the all sections in the __TEXT
   segments.  This leaves room at the beginning of the file to store
   the Mach-O header.  Check this value against header size to ensure
   the added load commands for the new __DATA segments did not
   overwrite any of the sections in the __TEXT segment.  */
168
static unsigned long text_seg_lowest_offset = 0x10000000;
169 170

/* Mach header.  */
171
static struct mach_header mh;
172 173

/* Offset at which the next load command should be written.  */
174
static unsigned long curr_header_offset = sizeof (struct mach_header);
175

176 177 178 179 180
/* Offset at which the next segment should be written.  */
static unsigned long curr_file_offset = 0;

static unsigned long pagesize;
#define ROUNDUP_TO_PAGE_BOUNDARY(x)	(((x) + pagesize - 1) & ~(pagesize - 1))
181

182
static int infd, outfd;
183

184
static int in_dumped_exec = 0;
185

186
static malloc_zone_t *emacs_zone;
187

188
/* file offset of input file's data segment */
189
static off_t data_segment_old_fileoff = 0;
190

191
static struct segment_command *data_segment_scp;
192

193 194
static void unexec_error (const char *format, ...) NO_RETURN;

195
/* Read N bytes from infd into memory starting at address DEST.
196 197 198 199 200 201 202
   Return true if successful, false otherwise.  */
static int
unexec_read (void *dest, size_t n)
{
  return n == read (infd, dest, n);
}

203 204 205
/* Write COUNT bytes from memory starting at address SRC to outfd
   starting at offset DEST.  Return true if successful, false
   otherwise.  */
206 207 208 209 210 211 212 213 214
static int
unexec_write (off_t dest, const void *src, size_t count)
{
  if (lseek (outfd, dest, SEEK_SET) != dest)
    return 0;

  return write (outfd, src, count) == count;
}

215 216 217 218 219 220 221 222
/* Write COUNT bytes of zeros to outfd starting at offset DEST.
   Return true if successful, false otherwise.  */
static int
unexec_write_zero (off_t dest, size_t count)
{
  char buf[UNEXEC_COPY_BUFSZ];
  ssize_t bytes;

223
  memset (buf, 0, UNEXEC_COPY_BUFSZ);
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  if (lseek (outfd, dest, SEEK_SET) != dest)
    return 0;

  while (count > 0)
    {
      bytes = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
      if (write (outfd, buf, bytes) != bytes)
	return 0;
      count -= bytes;
    }

  return 1;
}

/* Copy COUNT bytes from starting offset SRC in infd to starting
   offset DEST in outfd.  Return true if successful, false
   otherwise.  */
241 242 243 244
static int
unexec_copy (off_t dest, off_t src, ssize_t count)
{
  ssize_t bytes_read;
245
  ssize_t bytes_to_read;
246 247 248 249 250 251 252 253 254 255 256

  char buf[UNEXEC_COPY_BUFSZ];

  if (lseek (infd, src, SEEK_SET) != src)
    return 0;

  if (lseek (outfd, dest, SEEK_SET) != dest)
    return 0;

  while (count > 0)
    {
257 258
      bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
      bytes_read = read (infd, buf, bytes_to_read);
259 260 261 262 263 264 265 266 267 268 269 270 271
      if (bytes_read <= 0)
	return 0;
      if (write (outfd, buf, bytes_read) != bytes_read)
	return 0;
      count -= bytes_read;
    }

  return 1;
}

/* Debugging and informational messages routines.  */

static void
272
unexec_error (const char *format, ...)
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
{
  va_list ap;

  va_start (ap, format);
  fprintf (stderr, "unexec: ");
  vfprintf (stderr, format, ap);
  fprintf (stderr, "\n");
  va_end (ap);
  exit (1);
}

static void
print_prot (vm_prot_t prot)
{
  if (prot == VM_PROT_NONE)
    printf ("none");
  else
    {
      putchar (prot & VM_PROT_READ ? 'r' : ' ');
      putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
      putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
      putchar (' ');
    }
}

static void
print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
	      vm_prot_t max_prot)
{
302
  printf ("%#10lx %#8lx ", (long) address, (long) size);
303 304 305 306 307 308 309
  print_prot (prot);
  putchar (' ');
  print_prot (max_prot);
  putchar ('\n');
}

static void
310
print_region_list (void)
311 312 313 314 315 316 317 318 319
{
  struct region_t *r;

  printf ("   address     size prot maxp\n");

  for (r = region_list_head; r; r = r->next)
    print_region (r->address, r->size, r->protection, r->max_protection);
}

320
static void
321
print_regions (void)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
{
  task_t target_task = mach_task_self ();
  vm_address_t address = (vm_address_t) 0;
  vm_size_t size;
  struct vm_region_basic_info info;
  mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
  mach_port_t object_name;

  printf ("   address     size prot maxp\n");

  while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
		    (vm_region_info_t) &info, &info_count, &object_name)
	 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
    {
      print_region (address, size, info.protection, info.max_protection);

      if (object_name != MACH_PORT_NULL)
	mach_port_deallocate (target_task, object_name);
340

341 342 343 344 345 346 347 348 349 350
      address += size;
    }
}

/* Build the list of regions that need to be dumped.  Regions with
   addresses above VM_DATA_TOP are omitted.  Adjacent regions with
   identical protection are merged.  Note that non-writable regions
   cannot be omitted because they some regions created at run time are
   read-only.  */
static void
351
build_region_list (void)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
{
  task_t target_task = mach_task_self ();
  vm_address_t address = (vm_address_t) 0;
  vm_size_t size;
  struct vm_region_basic_info info;
  mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
  mach_port_t object_name;
  struct region_t *r;

#if VERBOSE
  printf ("--- List of All Regions ---\n");
  printf ("   address     size prot maxp\n");
#endif

  while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
		    (vm_region_info_t) &info, &info_count, &object_name)
	 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
    {
      /* Done when we reach addresses of shared libraries, which are
	 loaded in high memory.  */
      if (address >= VM_DATA_TOP)
	break;

#if VERBOSE
      print_region (address, size, info.protection, info.max_protection);
#endif

      /* If a region immediately follows the previous one (the one
	 most recently added to the list) and has identical
	 protection, merge it with the latter.  Otherwise create a
	 new list element for it.  */
      if (region_list_tail
	  && info.protection == region_list_tail->protection
	  && info.max_protection == region_list_tail->max_protection
	  && region_list_tail->address + region_list_tail->size == address)
	{
	  region_list_tail->size += size;
	}
      else
	{
	  r = (struct region_t *) malloc (sizeof (struct region_t));
393

394 395
	  if (!r)
	    unexec_error ("cannot allocate region structure");
396

397 398 399 400
	  r->address = address;
	  r->size = size;
	  r->protection = info.protection;
	  r->max_protection = info.max_protection;
401

402 403 404 405 406 407 408 409 410 411 412
	  r->next = 0;
	  if (region_list_head == 0)
	    {
	      region_list_head = r;
	      region_list_tail = r;
	    }
	  else
	    {
	      region_list_tail->next = r;
	      region_list_tail = r;
	    }
413

414 415 416 417 418
	  /* Deallocate (unused) object name returned by
	     vm_region.  */
	  if (object_name != MACH_PORT_NULL)
	    mach_port_deallocate (target_task, object_name);
	}
419

420 421 422 423 424 425 426 427
      address += size;
    }

  printf ("--- List of Regions to be Dumped ---\n");
  print_region_list ();
}


428
#define MAX_UNEXEC_REGIONS 400
429

430 431 432 433 434 435
static int num_unexec_regions;
typedef struct {
  vm_range_t range;
  vm_size_t filesize;
} unexec_region_info;
static unexec_region_info unexec_regions[MAX_UNEXEC_REGIONS];
436 437 438 439 440

static void
unexec_regions_recorder (task_t task, void *rr, unsigned type,
			 vm_range_t *ranges, unsigned num)
{
441 442 443
  vm_address_t p;
  vm_size_t filesize;

444 445
  while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
    {
446
      /* Subtract the size of trailing null bytes from filesize.  It
447
	 can be smaller than vmsize in segment commands.  In such a
448 449 450 451 452
	 case, trailing bytes are initialized with zeros.  */
      for (p = ranges->address + ranges->size; p > ranges->address; p--)
      	if (*(((char *) p)-1))
      	  break;
      filesize = p - ranges->address;
453 454 455 456 457

      unexec_regions[num_unexec_regions].filesize = filesize;
      unexec_regions[num_unexec_regions++].range = *ranges;
      printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges->address),
	      (long) filesize, (long) (ranges->size));
458 459 460 461 462 463 464 465 466 467 468
      ranges++; num--;
    }
}

static kern_return_t
unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
{
  *ptr = (void *) address;
  return KERN_SUCCESS;
}

469
static void
470
find_emacs_zone_regions (void)
471 472 473 474 475 476 477 478 479
{
  num_unexec_regions = 0;

  emacs_zone->introspect->enumerator (mach_task_self(), 0,
				      MALLOC_PTR_REGION_RANGE_TYPE
				      | MALLOC_ADMIN_REGION_RANGE_TYPE,
				      (vm_address_t) emacs_zone,
				      unexec_reader,
				      unexec_regions_recorder);
480 481 482

  if (num_unexec_regions == MAX_UNEXEC_REGIONS)
    unexec_error ("find_emacs_zone_regions: too many regions");
483 484
}

485 486 487
static int
unexec_regions_sort_compare (const void *a, const void *b)
{
488 489
  vm_address_t aa = ((unexec_region_info *) a)->range.address;
  vm_address_t bb = ((unexec_region_info *) b)->range.address;
490 491 492 493 494 495 496 497 498 499

  if (aa < bb)
    return -1;
  else if (aa > bb)
    return 1;
  else
    return 0;
}

static void
500
unexec_regions_merge (void)
501 502
{
  int i, n;
503
  unexec_region_info r;
504
  vm_size_t padsize;
505 506 507 508 509

  qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
	 &unexec_regions_sort_compare);
  n = 0;
  r = unexec_regions[0];
510 511 512 513 514 515 516
  padsize = r.range.address & (pagesize - 1);
  if (padsize)
    {
      r.range.address -= padsize;
      r.range.size += padsize;
      r.filesize += padsize;
    }
517 518
  for (i = 1; i < num_unexec_regions; i++)
    {
519 520
      if (r.range.address + r.range.size == unexec_regions[i].range.address
	  && r.range.size - r.filesize < 2 * pagesize)
521
	{
522 523
	  r.filesize = r.range.size + unexec_regions[i].filesize;
	  r.range.size += unexec_regions[i].range.size;
524 525 526 527 528
	}
      else
	{
	  unexec_regions[n++] = r;
	  r = unexec_regions[i];
529 530 531 532 533 534 535 536 537 538 539
	  padsize = r.range.address & (pagesize - 1);
	  if (padsize)
	    {
	      if ((unexec_regions[n-1].range.address
		   + unexec_regions[n-1].range.size) == r.range.address)
		unexec_regions[n-1].range.size -= padsize;

	      r.range.address -= padsize;
	      r.range.size += padsize;
	      r.filesize += padsize;
	    }
540 541 542 543 544 545
	}
    }
  unexec_regions[n++] = r;
  num_unexec_regions = n;
}

546 547 548 549 550 551 552 553 554

/* More informational messages routines.  */

static void
print_load_command_name (int lc)
{
  switch (lc)
    {
    case LC_SEGMENT:
555
#ifndef _LP64
556
      printf ("LC_SEGMENT       ");
557 558 559
#else
      printf ("LC_SEGMENT_64    ");
#endif
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
      break;
    case LC_LOAD_DYLINKER:
      printf ("LC_LOAD_DYLINKER ");
      break;
    case LC_LOAD_DYLIB:
      printf ("LC_LOAD_DYLIB    ");
      break;
    case LC_SYMTAB:
      printf ("LC_SYMTAB        ");
      break;
    case LC_DYSYMTAB:
      printf ("LC_DYSYMTAB      ");
      break;
    case LC_UNIXTHREAD:
      printf ("LC_UNIXTHREAD    ");
      break;
    case LC_PREBOUND_DYLIB:
      printf ("LC_PREBOUND_DYLIB");
      break;
    case LC_TWOLEVEL_HINTS:
      printf ("LC_TWOLEVEL_HINTS");
      break;
582 583 584 585
#ifdef LC_UUID
    case LC_UUID:
      printf ("LC_UUID          ");
      break;
586 587 588 589 590 591 592 593
#endif
#ifdef LC_DYLD_INFO
    case LC_DYLD_INFO:
      printf ("LC_DYLD_INFO     ");
      break;
    case LC_DYLD_INFO_ONLY:
      printf ("LC_DYLD_INFO_ONLY");
      break;
594
#endif
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
    default:
      printf ("unknown          ");
    }
}

static void
print_load_command (struct load_command *lc)
{
  print_load_command_name (lc->cmd);
  printf ("%8d", lc->cmdsize);

  if (lc->cmd == LC_SEGMENT)
    {
      struct segment_command *scp;
      struct section *sectp;
      int j;

      scp = (struct segment_command *) lc;
613 614
      printf (" %-16.16s %#10lx %#8lx\n",
	      scp->segname, (long) (scp->vmaddr), (long) (scp->vmsize));
615 616 617 618

      sectp = (struct section *) (scp + 1);
      for (j = 0; j < scp->nsects; j++)
	{
619 620
	  printf ("                           %-16.16s %#10lx %#8lx\n",
		  sectp->sectname, (long) (sectp->addr), (long) (sectp->size));
621 622 623 624 625 626 627 628 629 630 631
	  sectp++;
	}
    }
  else
    printf ("\n");
}

/* Read header and load commands from input file.  Store the latter in
   the global array lca.  Store the total number of load commands in
   global variable nlc.  */
static void
632
read_load_commands (void)
633
{
634
  int i;
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

  if (!unexec_read (&mh, sizeof (struct mach_header)))
    unexec_error ("cannot read mach-o header");

  if (mh.magic != MH_MAGIC)
    unexec_error ("input file not in Mach-O format");

  if (mh.filetype != MH_EXECUTE)
    unexec_error ("input Mach-O file is not an executable object file");

#if VERBOSE
  printf ("--- Header Information ---\n");
  printf ("Magic = 0x%08x\n", mh.magic);
  printf ("CPUType = %d\n", mh.cputype);
  printf ("CPUSubType = %d\n", mh.cpusubtype);
  printf ("FileType = 0x%x\n", mh.filetype);
  printf ("NCmds = %d\n", mh.ncmds);
  printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
  printf ("Flags = 0x%08x\n", mh.flags);
#endif

  nlc = mh.ncmds;
  lca = (struct load_command **) malloc (nlc * sizeof (struct load_command *));
658

659 660 661 662 663 664 665 666 667 668 669 670 671 672
  for (i = 0; i < nlc; i++)
    {
      struct load_command lc;
      /* Load commands are variable-size: so read the command type and
	 size first and then read the rest.  */
      if (!unexec_read (&lc, sizeof (struct load_command)))
        unexec_error ("cannot read load command");
      lca[i] = (struct load_command *) malloc (lc.cmdsize);
      memcpy (lca[i], &lc, sizeof (struct load_command));
      if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
        unexec_error ("cannot read content of load command");
      if (lc.cmd == LC_SEGMENT)
	{
	  struct segment_command *scp = (struct segment_command *) lca[i];
673

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	  if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
	    infile_lc_highest_addr = scp->vmaddr + scp->vmsize;

	  if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
	    {
	      struct section *sectp = (struct section *) (scp + 1);
	      int j;

	      for (j = 0; j < scp->nsects; j++)
		if (sectp->offset < text_seg_lowest_offset)
		  text_seg_lowest_offset = sectp->offset;
	    }
	}
    }

689 690
  printf ("Highest address of load commands in input file: %#8lx\n",
	  (unsigned long)infile_lc_highest_addr);
691

692
  printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
	  text_seg_lowest_offset);

  printf ("--- List of Load Commands in Input File ---\n");
  printf ("# cmd              cmdsize name                address     size\n");

  for (i = 0; i < nlc; i++)
    {
      printf ("%1d ", i);
      print_load_command (lca[i]);
    }
}

/* Copy a LC_SEGMENT load command other than the __DATA segment from
   the input file to the output file, adjusting the file offset of the
   segment and the file offsets of sections contained in it.  */
static void
copy_segment (struct load_command *lc)
{
  struct segment_command *scp = (struct segment_command *) lc;
  unsigned long old_fileoff = scp->fileoff;
  struct section *sectp;
  int j;

716
  scp->fileoff = curr_file_offset;
717 718 719 720

  sectp = (struct section *) (scp + 1);
  for (j = 0; j < scp->nsects; j++)
    {
721
      sectp->offset += curr_file_offset - old_fileoff;
722 723 724
      sectp++;
    }

725 726 727
  printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
	  scp->segname, (long) (scp->fileoff), (long) (scp->filesize),
	  (long) (scp->vmsize), (long) (scp->vmaddr));
728 729 730

  if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
    unexec_error ("cannot copy segment from input to output file");
731 732
  curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
  if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
    unexec_error ("cannot write load command to header");

  curr_header_offset += lc->cmdsize;
}

/* Copy a LC_SEGMENT load command for the __DATA segment in the input
   file to the output file.  We assume that only one such segment load
   command exists in the input file and it contains the sections
   __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
   __dyld.  The first three of these should be dumped from memory and
   the rest should be copied from the input file.  Note that the
   sections __bss and __common contain no data in the input file
   because their flag fields have the value S_ZEROFILL.  Dumping these
   from memory makes it necessary to adjust file offset fields in
   subsequently dumped load commands.  Then, create new __DATA segment
   load commands for regions on the region list other than the one
   corresponding to the __DATA segment in the input file.  */
static void
copy_data_segment (struct load_command *lc)
{
  struct segment_command *scp = (struct segment_command *) lc;
  struct section *sectp;
  int j;
757 758 759 760 761 762 763 764
  unsigned long header_offset, old_file_offset;

  /* The new filesize of the segment is set to its vmsize because data
     blocks for segments must start at region boundaries.  Note that
     this may leave unused locations at the end of the segment data
     block because the total of the sizes of all sections in the
     segment is generally smaller than vmsize.  */
  scp->filesize = scp->vmsize;
765

766 767 768
  printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
	  scp->segname, curr_file_offset, (long)(scp->filesize),
	  (long)(scp->vmsize), (long) (scp->vmaddr));
769 770 771 772 773 774 775 776 777

  /* Offsets in the output file for writing the next section structure
     and segment data block, respectively.  */
  header_offset = curr_header_offset + sizeof (struct segment_command);

  sectp = (struct section *) (scp + 1);
  for (j = 0; j < scp->nsects; j++)
    {
      old_file_offset = sectp->offset;
778
      sectp->offset = sectp->addr - scp->vmaddr + curr_file_offset;
779 780 781 782 783 784 785 786 787 788 789 790
      /* The __data section is dumped from memory.  The __bss and
	 __common sections are also dumped from memory but their flag
	 fields require changing (from S_ZEROFILL to S_REGULAR).  The
	 other three kinds of sections are just copied from the input
	 file.  */
      if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
	{
	  if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
	    unexec_error ("cannot write section %s", SECT_DATA);
	  if (!unexec_write (header_offset, sectp, sizeof (struct section)))
	    unexec_error ("cannot write section %s's header", SECT_DATA);
	}
791
      else if (strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
792 793 794
	{
	  sectp->flags = S_REGULAR;
	  if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
795
	    unexec_error ("cannot write section %s", sectp->sectname);
796
	  if (!unexec_write (header_offset, sectp, sizeof (struct section)))
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	    unexec_error ("cannot write section %s's header", sectp->sectname);
	}
      else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0)
	{
	  extern char *my_endbss_static;
	  unsigned long my_size;

	  sectp->flags = S_REGULAR;

	  /* Clear uninitialized local variables in statically linked
	     libraries.  In particular, function pointers stored by
	     libSystemStub.a, which is introduced in Mac OS X 10.4 for
	     binary compatibility with respect to long double, are
	     cleared so that they will be reinitialized when the
	     dumped binary is executed on other versions of OS.  */
	  my_size = (unsigned long)my_endbss_static - sectp->addr;
	  if (!(sectp->addr <= (unsigned long)my_endbss_static
		&& my_size <= sectp->size))
	    unexec_error ("my_endbss_static is not in section %s",
			  sectp->sectname);
	  if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
	    unexec_error ("cannot write section %s", sectp->sectname);
	  if (!unexec_write_zero (sectp->offset + my_size,
				  sectp->size - my_size))
	    unexec_error ("cannot write section %s", sectp->sectname);
	  if (!unexec_write (header_offset, sectp, sizeof (struct section)))
	    unexec_error ("cannot write section %s's header", sectp->sectname);
824 825 826
	}
      else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
	       || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
827
	       || strncmp (sectp->sectname, "__la_sym_ptr2", 16) == 0
828
	       || strncmp (sectp->sectname, "__dyld", 16) == 0
829
	       || strncmp (sectp->sectname, "__const", 16) == 0
830 831
	       || strncmp (sectp->sectname, "__cfstring", 16) == 0
	       || strncmp (sectp->sectname, "__gcc_except_tab", 16) == 0
832
	       || strncmp (sectp->sectname, "__program_vars", 16) == 0
833
	       || strncmp (sectp->sectname, "__objc_", 7) == 0)
834 835 836 837 838 839 840 841
	{
	  if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
	    unexec_error ("cannot copy section %s", sectp->sectname);
	  if (!unexec_write (header_offset, sectp, sizeof (struct section)))
	    unexec_error ("cannot write section %s's header", sectp->sectname);
	}
      else
	unexec_error ("unrecognized section name in __DATA segment");
842

843 844 845
      printf ("        section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
	      sectp->sectname, (long) (sectp->offset),
	      (long) (sectp->offset + sectp->size), (long) (sectp->size));
846 847 848 849 850

      header_offset += sizeof (struct section);
      sectp++;
    }

851 852
  curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);

853 854 855 856 857 858 859
  if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
    unexec_error ("cannot write header of __DATA segment");
  curr_header_offset += lc->cmdsize;

  /* Create new __DATA segment load commands for regions on the region
     list that do not corresponding to any segment load commands in
     the input file.
860
  */
861 862 863
  for (j = 0; j < num_unexec_regions; j++)
    {
      struct segment_command sc;
864

865 866 867
      sc.cmd = LC_SEGMENT;
      sc.cmdsize = sizeof (struct segment_command);
      strncpy (sc.segname, SEG_DATA, 16);
868 869
      sc.vmaddr = unexec_regions[j].range.address;
      sc.vmsize = unexec_regions[j].range.size;
870
      sc.fileoff = curr_file_offset;
871
      sc.filesize = unexec_regions[j].filesize;
872 873 874 875
      sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
      sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
      sc.nsects = 0;
      sc.flags = 0;
876

877 878 879
      printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
	      sc.segname, (long) (sc.fileoff), (long) (sc.filesize),
	      (long) (sc.vmsize), (long) (sc.vmaddr));
880

881
      if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.filesize))
882
	unexec_error ("cannot write new __DATA segment");
883
      curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (sc.filesize);
884

885 886 887 888 889 890 891 892 893 894
      if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
	unexec_error ("cannot write new __DATA segment's header");
      curr_header_offset += sc.cmdsize;
      mh.ncmds++;
    }
}

/* Copy a LC_SYMTAB load command from the input file to the output
   file, adjusting the file offset fields.  */
static void
895
copy_symtab (struct load_command *lc, long delta)
896 897 898 899 900 901 902 903 904 905 906 907 908 909
{
  struct symtab_command *stp = (struct symtab_command *) lc;

  stp->symoff += delta;
  stp->stroff += delta;

  printf ("Writing LC_SYMTAB command\n");

  if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
    unexec_error ("cannot write symtab command to header");

  curr_header_offset += lc->cmdsize;
}

910 911
/* Fix up relocation entries. */
static void
912
unrelocate (const char *name, off_t reloff, int nrel, vm_address_t base)
913 914 915 916 917
{
  int i, unreloc_count;
  struct relocation_info reloc_info;
  struct scattered_relocation_info *sc_reloc_info
    = (struct scattered_relocation_info *) &reloc_info;
918
  vm_address_t location;
919 920 921 922 923 924 925 926 927 928 929 930 931

  for (unreloc_count = 0, i = 0; i < nrel; i++)
    {
      if (lseek (infd, reloff, L_SET) != reloff)
	unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
      if (!unexec_read (&reloc_info, sizeof (reloc_info)))
	unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
      reloff += sizeof (reloc_info);

      if (sc_reloc_info->r_scattered == 0)
	switch (reloc_info.r_type)
	  {
	  case GENERIC_RELOC_VANILLA:
932
	    location = base + reloc_info.r_address;
933 934 935
	    if (location >= data_segment_scp->vmaddr
		&& location < (data_segment_scp->vmaddr
			       + data_segment_scp->vmsize))
936 937
	      {
		off_t src_off = data_segment_old_fileoff
938
		  + (location - data_segment_scp->vmaddr);
939
		off_t dst_off = data_segment_scp->fileoff
940
		  + (location - data_segment_scp->vmaddr);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

		if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
		  unexec_error ("unrelocate: %s:%d cannot copy original value",
				name, i);
		unreloc_count++;
	      }
	    break;
	  default:
	    unexec_error ("unrelocate: %s:%d cannot handle type = %d",
			  name, i, reloc_info.r_type);
	  }
      else
	switch (sc_reloc_info->r_type)
	  {
#if defined (__ppc__)
	  case PPC_RELOC_PB_LA_PTR:
	    /* nothing to do for prebound lazy pointer */
	    break;
#endif
	  default:
	    unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
			  name, i, sc_reloc_info->r_type);
	  }
    }

  if (nrel > 0)
    printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
	    unreloc_count, nrel, name);
}

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
#if __ppc64__
/* Rebase r_address in the relocation table.  */
static void
rebase_reloc_address (off_t reloff, int nrel, long linkedit_delta, long diff)
{
  int i;
  struct relocation_info reloc_info;
  struct scattered_relocation_info *sc_reloc_info
    = (struct scattered_relocation_info *) &reloc_info;

  for (i = 0; i < nrel; i++, reloff += sizeof (reloc_info))
    {
      if (lseek (infd, reloff - linkedit_delta, L_SET)
	  != reloff - linkedit_delta)
	unexec_error ("rebase_reloc_table: cannot seek to reloc_info");
      if (!unexec_read (&reloc_info, sizeof (reloc_info)))
	unexec_error ("rebase_reloc_table: cannot read reloc_info");

      if (sc_reloc_info->r_scattered == 0
	  && reloc_info.r_type == GENERIC_RELOC_VANILLA)
	{
	  reloc_info.r_address -= diff;
	  if (!unexec_write (reloff, &reloc_info, sizeof (reloc_info)))
	    unexec_error ("rebase_reloc_table: cannot write reloc_info");
	}
    }
}
#endif

1000 1001 1002
/* Copy a LC_DYSYMTAB load command from the input file to the output
   file, adjusting the file offset fields.  */
static void
1003
copy_dysymtab (struct load_command *lc, long delta)
1004 1005
{
  struct dysymtab_command *dstp = (struct dysymtab_command *) lc;
1006
  vm_address_t base;
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
#ifdef _LP64
#if __ppc64__
  {
    int i;

    base = 0;
    for (i = 0; i < nlc; i++)
      if (lca[i]->cmd == LC_SEGMENT)
	{
	  struct segment_command *scp = (struct segment_command *) lca[i];

	  if (scp->vmaddr + scp->vmsize > 0x100000000
	      && (scp->initprot & VM_PROT_WRITE) != 0)
	    {
	      base = data_segment_scp->vmaddr;
	      break;
	    }
	}
  }
#else
  /* First writable segment address.  */
  base = data_segment_scp->vmaddr;
#endif
#else
  /* First segment address in the file (unless MH_SPLIT_SEGS set). */
  base = 0;
#endif

  unrelocate ("local", dstp->locreloff, dstp->nlocrel, base);
  unrelocate ("external", dstp->extreloff, dstp->nextrel, base);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

  if (dstp->nextrel > 0) {
    dstp->extreloff += delta;
  }

  if (dstp->nlocrel > 0) {
    dstp->locreloff += delta;
  }

  if (dstp->nindirectsyms > 0)
    dstp->indirectsymoff += delta;

  printf ("Writing LC_DYSYMTAB command\n");

  if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
    unexec_error ("cannot write symtab command to header");

  curr_header_offset += lc->cmdsize;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

#if __ppc64__
  /* Check if the relocation base needs to be changed.  */
  if (base == 0)
    {
      vm_address_t newbase = 0;
      int i;

      for (i = 0; i < num_unexec_regions; i++)
	if (unexec_regions[i].range.address + unexec_regions[i].range.size
	    > 0x100000000)
	  {
	    newbase = data_segment_scp->vmaddr;
	    break;
	  }

      if (newbase)
	{
	  rebase_reloc_address (dstp->locreloff, dstp->nlocrel, delta, newbase);
	  rebase_reloc_address (dstp->extreloff, dstp->nextrel, delta, newbase);
	}
    }
#endif
1079 1080
}

1081 1082 1083
/* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
   file, adjusting the file offset fields.  */
static void
1084
copy_twolevelhints (struct load_command *lc, long delta)
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
{
  struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;

  if (tlhp->nhints > 0) {
    tlhp->offset += delta;
  }

  printf ("Writing LC_TWOLEVEL_HINTS command\n");

  if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
    unexec_error ("cannot write two level hint command to header");

  curr_header_offset += lc->cmdsize;
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
#ifdef LC_DYLD_INFO
/* Copy a LC_DYLD_INFO(_ONLY) load command from the input file to the output
   file, adjusting the file offset fields.  */
static void
copy_dyld_info (struct load_command *lc, long delta)
{
  struct dyld_info_command *dip = (struct dyld_info_command *) lc;

  if (dip->rebase_off > 0)
    dip->rebase_off += delta;
  if (dip->bind_off > 0)
    dip->bind_off += delta;
  if (dip->weak_bind_off > 0)
    dip->weak_bind_off += delta;
  if (dip->lazy_bind_off > 0)
    dip->lazy_bind_off += delta;
  if (dip->export_off > 0)
    dip->export_off += delta;

  printf ("Writing ");
  print_load_command_name (lc->cmd);
  printf (" command\n");

  if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
    unexec_error ("cannot write dyld info command to header");

  curr_header_offset += lc->cmdsize;
}
#endif

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
/* Copy other kinds of load commands from the input file to the output
   file, ones that do not require adjustments of file offsets.  */
static void
copy_other (struct load_command *lc)
{
  printf ("Writing ");
  print_load_command_name (lc->cmd);
  printf (" command\n");

  if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
    unexec_error ("cannot write symtab command to header");

  curr_header_offset += lc->cmdsize;
}

/* Loop through all load commands and dump them.  Then write the Mach
   header.  */
static void
1148
dump_it (void)
1149 1150
{
  int i;
1151
  long linkedit_delta = 0;
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

  printf ("--- Load Commands written to Output File ---\n");

  for (i = 0; i < nlc; i++)
    switch (lca[i]->cmd)
      {
      case LC_SEGMENT:
	{
	  struct segment_command *scp = (struct segment_command *) lca[i];
	  if (strncmp (scp->segname, SEG_DATA, 16) == 0)
	    {
1163 1164
	      /* save data segment file offset and segment_command for
		 unrelocate */
1165 1166 1167
	      if (data_segment_old_fileoff)
		unexec_error ("cannot handle multiple DATA segments"
			      " in input file");
1168 1169 1170
	      data_segment_old_fileoff = scp->fileoff;
	      data_segment_scp = scp;

1171 1172 1173 1174
	      copy_data_segment (lca[i]);
	    }
	  else
	    {
1175 1176 1177 1178 1179 1180 1181 1182
	      if (strncmp (scp->segname, SEG_LINKEDIT, 16) == 0)
		{
		  if (linkedit_delta)
		    unexec_error ("cannot handle multiple LINKEDIT segments"
				  " in input file");
		  linkedit_delta = curr_file_offset - scp->fileoff;
		}

1183 1184 1185 1186 1187
	      copy_segment (lca[i]);
	    }
	}
	break;
      case LC_SYMTAB:
1188
	copy_symtab (lca[i], linkedit_delta);
1189 1190
	break;
      case LC_DYSYMTAB:
1191
	copy_dysymtab (lca[i], linkedit_delta);
1192
	break;
1193
      case LC_TWOLEVEL_HINTS:
1194
	copy_twolevelhints (lca[i], linkedit_delta);
1195
	break;
1196 1197 1198 1199 1200 1201
#ifdef LC_DYLD_INFO
      case LC_DYLD_INFO:
      case LC_DYLD_INFO_ONLY:
	copy_dyld_info (lca[i], linkedit_delta);
	break;
#endif
1202 1203 1204 1205 1206 1207 1208 1209
      default:
	copy_other (lca[i]);
	break;
      }

  if (curr_header_offset > text_seg_lowest_offset)
    unexec_error ("not enough room for load commands for new __DATA segments");

1210
  printf ("%ld unused bytes follow Mach-O header\n",
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	  text_seg_lowest_offset - curr_header_offset);

  mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
  if (!unexec_write (0, &mh, sizeof (struct mach_header)))
    unexec_error ("cannot write final header contents");
}

/* Take a snapshot of Emacs and make a Mach-O format executable file
   from it.  The file names of the output and input files are outfile
   and infile, respectively.  The three other parameters are
   ignored.  */
1222 1223
int
unexec (const char *outfile, const char *infile)
1224
{
1225 1226 1227
  if (in_dumped_exec)
    unexec_error ("Unexec from a dumped executable is not supported.");

1228
  pagesize = getpagesize ();
1229 1230 1231 1232 1233
  infd = open (infile, O_RDONLY, 0);
  if (infd < 0)
    {
      unexec_error ("cannot open input file `%s'", infile);
    }
1234

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
  outfd = open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0755);
  if (outfd < 0)
    {
      close (infd);
      unexec_error ("cannot open output file `%s'", outfile);
    }

  build_region_list ();
  read_load_commands ();

  find_emacs_zone_regions ();
1246
  unexec_regions_merge ();
1247 1248 1249 1250 1251 1252

  in_dumped_exec = 1;

  dump_it ();

  close (outfd);
1253
  return 0;
1254 1255 1256 1257
}


void
1258
unexec_init_emacs_zone (void)
1259 1260 1261 1262 1263
{
  emacs_zone = malloc_create_zone (0, 0);
  malloc_set_zone_name (emacs_zone, "EmacsZone");
}

YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
#ifndef MACOSX_MALLOC_MULT16
#define MACOSX_MALLOC_MULT16 1
#endif

typedef struct unexec_malloc_header {
  union {
    char c[8];
    size_t size;
  } u;
} unexec_malloc_header_t;

#if MACOSX_MALLOC_MULT16

#define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)

#else

1281 1282 1283 1284 1285 1286
int
ptr_in_unexec_regions (void *ptr)
{
  int i;

  for (i = 0; i < num_unexec_regions; i++)
1287 1288
    if ((vm_address_t) ptr - unexec_regions[i].range.address
	< unexec_regions[i].range.size)
1289 1290 1291 1292 1293
      return 1;

  return 0;
}

YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1294 1295
#endif

1296 1297 1298 1299
void *
unexec_malloc (size_t size)
{
  if (in_dumped_exec)
YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1300 1301 1302 1303 1304 1305 1306 1307 1308
    {
      void *p;

      p = malloc (size);
#if MACOSX_MALLOC_MULT16
      assert (((vm_address_t) p % 16) == 0);
#endif
      return p;
    }
1309
  else
YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
    {
      unexec_malloc_header_t *ptr;

      ptr = (unexec_malloc_header_t *)
	malloc_zone_malloc (emacs_zone, size + sizeof (unexec_malloc_header_t));
      ptr->u.size = size;
      ptr++;
#if MACOSX_MALLOC_MULT16
      assert (((vm_address_t) ptr % 16) == 8);
#endif
      return (void *) ptr;
    }
1322 1323 1324 1325 1326 1327
}

void *
unexec_realloc (void *old_ptr, size_t new_size)
{
  if (in_dumped_exec)
YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1328 1329 1330 1331 1332 1333 1334 1335
    {
      void *p;

      if (ptr_in_unexec_regions (old_ptr))
	{
	  size_t old_size = ((unexec_malloc_header_t *) old_ptr)[-1].u.size;
	  size_t size = new_size > old_size ? old_size : new_size;

1336
	  p = (size_t *) malloc (new_size);
YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	  if (size)
	    memcpy (p, old_ptr, size);
	}
      else
	{
	  p = realloc (old_ptr, new_size);
	}
#if MACOSX_MALLOC_MULT16
      assert (((vm_address_t) p % 16) == 0);
#endif
      return p;
    }
1349
  else
YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
    {
      unexec_malloc_header_t *ptr;

      ptr = (unexec_malloc_header_t *)
	malloc_zone_realloc (emacs_zone, (unexec_malloc_header_t *) old_ptr - 1,
			     new_size + sizeof (unexec_malloc_header_t));
      ptr->u.size = new_size;
      ptr++;
#if MACOSX_MALLOC_MULT16
      assert (((vm_address_t) ptr % 16) == 8);
#endif
      return (void *) ptr;
    }
1363 1364 1365 1366 1367
}

void
unexec_free (void *ptr)
{
1368 1369
  if (ptr == NULL)
    return;
1370 1371 1372 1373 1374 1375
  if (in_dumped_exec)
    {
      if (!ptr_in_unexec_regions (ptr))
	free (ptr);
    }
  else
YAMAMOTO Mitsuharu's avatar
YAMAMOTO Mitsuharu committed
1376
    malloc_zone_free (emacs_zone, (unexec_malloc_header_t *) ptr - 1);
1377
}
Miles Bader's avatar
Miles Bader committed
1378