Commit f042e7b9 authored by Dave Love's avatar Dave Love
Browse files

("TeX"): Renamed from "latin-latex2e".

Language family and indicator changed.  Many new translations.
parent f90c23ca
2001-05-17 Dave Love <fx@gnu.org>
* quail/latin-ltx.el ("TeX"): Renamed from "latin-latex2e".
Language family and indicator changed. Many new translations.
2001-05-17 Gerd Moellmann <gerd@gnu.org>
* quail/slovak.el, quail/czech.el: Set guidance to t for czech and
......
;;; quail/latin-ltx.el -- Quail package for Latin scripts
;;; quail/latin-ltx.el -- Quail package for TeX-style input -*-coding: iso-2022-7bit-*-
;; Copyright (C) 2001 Electrotechnical Laboratory, JAPAN.
;; Licensed to the Free Software Foundation.
;; Copyright (C) 2001 Free Software Foundation, Inc.
;; Keywords: multilingual, input method, Greek
;; Keywords: multilingual, input, Greek, i18n
;; This file is part of GNU Emacs.
......@@ -27,9 +28,13 @@
(require 'quail)
(quail-define-package
"latin-latex2e" "Latin" "LL" t
"The LaTeX-like input method for Latin characters.
The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported."
"TeX" "UTF-8" "\\" t
"LaTeX-like input method for many characters.
These characters are from the charsets used by the `utf-8' coding
system, including many technical ones. Examples:
\\'a -> ,Aa(B \\`{a} -> ,A`(B
\\pi -> $,1'@(B \\int -> $,1xK(B ^1 -> ,A9(B"
nil t t nil nil nil nil nil nil nil t)
(quail-define-rules
......@@ -40,12 +45,15 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported."
("{\\copyright}" ?,A)(B) ("\\copyright" ?,A)(B)
("$^a$" ?,A*(B)
("\\={}" ?,A/(B)
("$\\pm$" ?,A1(B)
("$\\pm$" ?,A1(B) ("\\pm" ?,A1(B)
("$^2$" ?,A2(B)
("$^3$" ?,A3(B)
("\\'{}" ?,A4(B)
("{\\P}" ?,A6(B) ("\\P" ?,A6(B)
("$\\cdot$" ?,A7(B)
;; Fixme: Yudit has the equivalent of ("\\cdot" ?$,1z%(B), for U+22C5, DOT
;; OPERATOR, whereas ,A7(B is MIDDLE DOT. JadeTeX translates both to
;; \cdot.
("$\\cdot$" ?,A7(B) ("\\cdot" ?,A7(B)
("\\c{}" ?,A8(B)
("$^1$" ?,A9(B)
("$^o$" ?,A:(B)
......@@ -78,7 +86,7 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported."
("\\~{O}" ?,AU(B) ("\\~O" ?,AU(B)
("\\\"{O}" ?,AV(B) ("\\\"O" ?,AV(B)
("\\\k{O}" ?$,1"J(B)
("$\\times$" ?,AW(B)
("$\\times$" ?,AW(B) ("\\times" ?,AW(B)
("{\\O}" ?,AX(B) ("\\O" ?,AX(B)
("\\`{U}" ?,AY(B) ("\\`U" ?,AY(B)
("\\'{U}" ?,AZ(B) ("\\'U" ?,AZ(B)
......@@ -115,7 +123,7 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported."
("\\~{o}" ?,Au(B) ("\\~o" ?,Au(B)
("\\\"{o}" ?,Av(B) ("\\\"o" ?,Av(B)
("\\\k{o}" ?$,1"K(B)
("$\\div$" ?,Aw(B)
("$\\div$" ?,Aw(B) ("\\div" ?,Aw(B)
("{\\o}" ?,Ax(B) ("\\o" ?,Ax(B)
("\\`{u}" ?,Ay(B) ("\\`u" ?,Ay(B)
("\\'{u}" ?,Az(B) ("\\'u" ?,Az(B)
......@@ -255,9 +263,9 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported."
("\\'{g}" ?$,1"U(B) ("\\'g" ?$,1"U(B)
("\\`{N}" ?$,1"X(B) ("\\`N" ?$,1"X(B)
("\\`{n}" ?$,1"Y(B) ("\\`n" ?$,1"Y(B)
("\\'{\\AE}" ?$,1"\(B) ("\\'\\AE")
("\\'{\\AE}" ?$,1"\(B) ("\\'\\AE" ?$,1"\(B)
("\\'{\\ae}" ?$,1"](B) ("\\'\\ae" ?$,1"](B)
("\\'{\\O}" ?$,1"^(B) ("\\'\\O")
("\\'{\\O}" ?$,1"^(B) ("\\'\\O" ?$,1"^(B)
("\\'{\\o}" ?$,1"_(B) ("\\'\\o" ?$,1"_(B)
("\\v{H}" ?$,1"~(B) ("\\vH" ?$,1"~(B)
......@@ -276,4 +284,617 @@ The characters in latin-iso8859-1 and mule-unicode-0100-24ff are supported."
("\\.{}" ?$,1$y(B)
("\\~{}" ?$,1$|(B)
("\\H{}" ?$,1$}(B)
("\\'" ?$,1%A(B)
("\\'K" ?$,1mp(B)
("\\'M" ?$,1m~(B)
("\\'P" ?$,1n4(B)
("\\'W" ?$,1nb(B)
("\\'k" ?$,1mq(B)
("\\'m" ?$,1m(B)
("\\'p" ?$,1n5(B)
("\\'w" ?$,1nc(B)
("\\," ?$,1rf(B)
("\\." ?$,1%G(B)
("\\.B" ?$,1mB(B)
("\\.D" ?$,1mJ(B)
("\\.F" ?$,1m^(B)
("\\.H" ?$,1mb(B)
("\\.M" ?$,1n (B)
("\\.N" ?$,1n$(B)
("\\.P" ?$,1n6(B)
("\\.R" ?$,1n8(B)
("\\.S" ?$,1n@(B)
("\\.T" ?$,1nJ(B)
("\\.W" ?$,1nf(B)
("\\.X" ?$,1nj(B)
("\\.Y" ?$,1nn(B)
("\\.b" ?$,1mC(B)
("\\.d" ?$,1mK(B)
("\\.e" ?$,1 7(B)
("\\.f" ?$,1m_(B)
("\\.h" ?$,1mc(B)
("\\.m" ?$,1n!(B)
("\\.n" ?$,1n%(B)
("\\.p" ?$,1n7(B)
("\\.r" ?$,1n9(B)
("\\.s" ?$,1nA(B)
("\\.t" ?$,1nK(B)
("\\.w" ?$,1ng(B)
("\\.x" ?$,1nk(B)
("\\.y" ?$,1no(B)
("\\/" ?$,1rl(B)
("\\:" ?$,1re(B)
("\\;" ?$,1rd(B)
("\\=" ?$,1%D(B)
("\\=G" ?$,1m`(B)
("\\=g" ?$,1ma(B)
("^(" ?$,1s}(B)
("^)" ?$,1s~(B)
("^+" ?$,1sz(B)
("^-" ?$,1s{(B)
("^0" ?$,1sp(B)
("^1" ?,A9(B)
("^2" ?,A2(B)
("^3" ?,A3(B)
("^4" ?$,1st(B)
("^5" ?$,1su(B)
("^6" ?$,1sv(B)
("^7" ?$,1sw(B)
("^8" ?$,1sx(B)
("^9" ?$,1sy(B)
("^=" ?$,1s|(B)
("^\\gamma" ?$,1% (B)
("^h" ?$,1$P(B)
("^j" ?$,1$R(B)
("^l" ?$,1%!(B)
("^n" ?$,1s(B)
("^o" ?,A:(B)
("^r" ?$,1$S(B)
("^s" ?$,1%"(B)
("^w" ?$,1$W(B)
("^x" ?$,1%#(B)
("^y" ?$,1$X(B)
("^{SM}" ?$,1u`(B)
("^{TEL}" ?$,1ua(B)
("^{TM}" ?$,1ub(B)
("_(" ?$,1t-(B)
("_)" ?$,1t.(B)
("_+" ?$,1t*(B)
("_-" ?$,1t+(B)
("_0" ?$,1t (B)
("_1" ?$,1t!(B)
("_2" ?$,1t"(B)
("_3" ?$,1t#(B)
("_4" ?$,1t$(B)
("_5" ?$,1t%(B)
("_6" ?$,1t&(B)
("_7" ?$,1t'(B)
("_8" ?$,1t((B)
("_9" ?$,1t)(B)
("_=" ?$,1t,(B)
("\\~" ?$,1%C(B)
("\\~E" ?$,1o<(B)
("\\~V" ?$,1n\(B)
("\\~Y" ?$,1ox(B)
("\\~e" ?$,1o=(B)
("\\~v" ?$,1n](B)
("\\~y" ?$,1oy(B)
("\\\"" ?$,1%H(B)
("\\\"H" ?$,1mf(B)
("\\\"W" ?$,1nd(B)
("\\\"X" ?$,1nl(B)
("\\\"h" ?$,1mg(B)
("\\\"t" ?$,1nw(B)
("\\\"w" ?$,1ne(B)
("\\\"x" ?$,1nm(B)
("\\^" ?$,1%B(B)
("\\^Z" ?$,1np(B)
("\\^z" ?$,1nq(B)
("\\`" ?$,1%@(B)
("\\`W" ?$,1n`(B)
("\\`Y" ?$,1or(B)
("\\`w" ?$,1na(B)
("\\`y" ?$,1os(B)
("\\b" ?$,1%q(B)
("\\c" ?$,1%g(B)
("\\c{D}" ?$,1mP(B)
("\\c{H}" ?$,1mh(B)
("\\c{d}" ?$,1mQ(B)
("\\c{h}" ?$,1mi(B)
("\\d" ?$,1%c(B)
("\\d{A}" ?$,1o (B)
("\\d{B}" ?$,1mD(B)
("\\d{D}" ?$,1mL(B)
("\\d{E}" ?$,1o8(B)
("\\d{H}" ?$,1md(B)
("\\d{I}" ?$,1oJ(B)
("\\d{K}" ?$,1mr(B)
("\\d{L}" ?$,1mv(B)
("\\d{M}" ?$,1n"(B)
("\\d{N}" ?$,1n&(B)
("\\d{O}" ?$,1oL(B)
("\\d{R}" ?$,1n:(B)
("\\d{S}" ?$,1nB(B)
("\\d{T}" ?$,1nL(B)
("\\d{U}" ?$,1od(B)
("\\d{V}" ?$,1n^(B)
("\\d{W}" ?$,1nh(B)
("\\d{Y}" ?$,1ot(B)
("\\d{Z}" ?$,1nr(B)
("\\d{a}" ?$,1o!(B)
("\\d{b}" ?$,1mE(B)
("\\d{d}" ?$,1mM(B)
("\\d{e}" ?$,1o9(B)
("\\d{h}" ?$,1me(B)
("\\d{i}" ?$,1oK(B)
("\\d{k}" ?$,1ms(B)
("\\d{l}" ?$,1mw(B)
("\\d{m}" ?$,1n#(B)
("\\d{n}" ?$,1n'(B)
("\\d{o}" ?$,1oM(B)
("\\d{r}" ?$,1n;(B)
("\\d{s}" ?$,1nC(B)
("\\d{t}" ?$,1nM(B)
("\\d{u}" ?$,1oe(B)
("\\d{v}" ?$,1n_(B)
("\\d{w}" ?$,1ni(B)
("\\d{y}" ?$,1ou(B)
("\\d{z}" ?$,1ns(B)
("\\rq" ?$,1ry(B)
("\\u" ?$,1%F(B)
("\\v" ?$,1%L(B)
("\\v{L}" ?$,1 ](B)
("\\v{i}" ?$,1"0(B)
("\\v{j}" ?$,1"P(B)
("\\v{l}" ?$,1 ^(B)
("\\yen" ?,A%(B)
("\\Box" ?$,2!a(B)
("\\Bumpeq" ?$,1xn(B)
("\\Cap" ?$,1z2(B)
("\\Cup" ?$,1z3(B)
("\\Delta" ?$,1&t(B)
("\\Diamond" ?$,2"'(B)
("\\Downarrow" ?$,1wS(B)
("\\Gamma" ?$,1&s(B)
("\\H" ?$,1%K(B)
("\\H{o}" ?$,1 q(B)
("\\Im" ?$,1uQ(B)
("\\Join" ?$,1z((B)
("\\Lambda" ?$,1&{(B)
("\\Leftarrow" ?$,1wP(B)
("\\Leftrightarrow" ?$,1wT(B)
("\\Ll" ?$,1z8(B)
("\\Lleftarrow" ?$,1wZ(B)
("\\Longleftarrow" ?$,1wP(B)
("\\Longleftrightarrow" ?$,1wT(B)
("\\Longrightarrow" ?$,1wR(B)
("\\Lsh" ?$,1w0(B)
("\\Omega" ?$,1')(B)
("\\Phi" ?$,1'&(B)
("\\Pi" ?$,1' (B)
("\\Psi" ?$,1'((B)
("\\Re" ?$,1u\(B)
("\\Rightarrow" ?$,1wR(B)
("\\Rrightarrow" ?$,1w[(B)
("\\Rsh" ?$,1w1(B)
("\\Sigma" ?$,1'#(B)
("\\Subset" ?$,1z0(B)
("\\Supset" ?$,1z1(B)
("\\Theta" ?$,1&x(B)
("\\Uparrow" ?$,1wQ(B)
("\\Updownarrow" ?$,1wU(B)
("\\Upsilon" ?$,1'%(B)
("\\Vdash" ?$,1yi(B)
("\\Vert" ?$,1rv(B)
("\\Vvdash" ?$,1yj(B)
("\\Xi" ?$,1&~(B)
("\\aleph" ?$,1uu(B)
("\\alpha" ?$,1'1(B)
("\\amalg" ?$,1x0(B)
("\\angle" ?$,1x@(B)
("\\approx" ?$,1xh(B)
("\\approxeq" ?$,1xj(B)
("\\ast" ?$,1x7(B)
("\\asymp" ?$,1xm(B)
("\\backcong" ?$,1xl(B)
("\\backepsilon" ?$,1x-(B)
("\\backprime" ?$,1s5(B)
("\\backsim" ?$,1x](B)
("\\backsimeq" ?$,1z-(B)
("\\backslash" ?\\)
("\\barwedge" ?$,1y|(B)
("\\because" ?$,1xU(B)
("\\beta" ?$,1'2(B)
("\\beth" ?$,1uv(B)
("\\between" ?$,1y,(B)
("\\bigcap" ?$,1z"(B)
("\\bigcirc" ?$,2"O(B)
("\\bigcup" ?$,1z#(B)
("\\bigstar" ?$,2"e(B)
("\\bigtriangledown" ?$,2!}(B)
("\\bigtriangleup" ?$,2!s(B)
("\\bigvee" ?$,1z!(B)
("\\bigwedge" ?$,1z (B)
("\\blacklozenge" ?$,2%f(B)
("\\blacksquare" ?$,2!j(B)
("\\blacktriangle" ?$,2!t(B)
("\\blacktriangledown" ?$,2!~(B)
("\\blacktriangleleft" ?$,2""(B)
("\\blacktriangleright" ?$,2!x(B)
("\\bot" ?$,1ye(B)
("\\bowtie" ?$,1z((B)
("\\boxminus" ?$,1y_(B)
("\\boxplus" ?$,1y^(B)
("\\boxtimes" ?$,1y`(B)
("\\bullet" ?$,1s"(B)
("\\bumpeq" ?$,1xo(B)
("\\cap" ?$,1xI(B)
("\\cdots" ?$,1zO(B)
("\\centerdot" ?,A7(B)
("\\checkmark" ?$,2%S(B)
("\\chi" ?$,1'G(B)
("\\circ" ?$,2"+(B)
("\\circeq" ?$,1xw(B)
("\\circlearrowleft" ?$,1w:(B)
("\\circlearrowright" ?$,1w;(B)
("\\circledR" ?,A.(B)
("\\circledS" ?$,1H(B)
("\\circledast" ?$,1y[(B)
("\\circledcirc" ?$,1yZ(B)
("\\circleddash" ?$,1y](B)
("\\clubsuit" ?$,2#c(B)
("\\colon" ?:)
("\\coloneq" ?$,1xt(B)
("\\complement" ?$,1x!(B)
("\\cong" ?$,1xe(B)
("\\coprod" ?$,1x0(B)
("\\cup" ?$,1xJ(B)
("\\curlyeqprec" ?$,1z>(B)
("\\curlyeqsucc" ?$,1z?(B)
("\\curlypreceq" ?$,1y<(B)
("\\curlyvee" ?$,1z.(B)
("\\curlywedge" ?$,1z/(B)
("\\curvearrowleft" ?$,1w6(B)
("\\curvearrowright" ?$,1w7(B)
("\\dag" ?$,1s (B)
("\\dagger" ?$,1s (B)
("\\daleth" ?$,1ux(B)
("\\dashv" ?$,1yc(B)
("\\ddag" ?$,1s!(B)
("\\ddagger" ?$,1s!(B)
("\\ddots" ?$,1zQ(B)
("\\delta" ?$,1'4(B)
("\\diamond" ?$,1z$(B)
("\\diamondsuit" ?$,2#b(B)
("\\digamma" ?$,1'\(B)
("\\divideontimes" ?$,1z'(B)
("\\doteq" ?$,1xp(B)
("\\doteqdot" ?$,1xq(B)
("\\dotplus" ?$,1x4(B)
("\\dotsquare" ?$,1ya(B)
("\\downarrow" ?$,1vs(B)
("\\downdownarrows" ?$,1wJ(B)
("\\downleftharpoon" ?$,1wC(B)
("\\downrightharpoon" ?$,1wB(B)
("\\ell" ?$,1uS(B)
("\\emptyset" ?$,1x%(B)
("\\epsilon" ?$,1'5(B)
("\\eqcirc" ?$,1xv(B)
("\\eqcolon" ?$,1xu(B)
("\\eqslantgtr" ?$,1z=(B)
("\\eqslantless" ?$,1z<(B)
("\\equiv" ?$,1y!(B)
("\\eta" ?$,1'7(B)
("\\euro" ?$,1tL(B)
("\\exists" ?$,1x#(B)
("\\fallingdotseq" ?$,1xr(B)
("\\flat" ?$,2#m(B)
("\\forall" ?$,1x (B)
("\\frac1" ?$,1v?(B)
("\\frac12" ?,A=(B)
("\\frac13" ?$,1v3(B)
("\\frac14" ?,A<(B)
("\\frac15" ?$,1v5(B)
("\\frac16" ?$,1v9(B)
("\\frac18" ?$,1v;(B)
("\\frac23" ?$,1v4(B)
("\\frac25" ?$,1v6(B)
("\\frac34" ?,A>(B)
("\\frac35" ?$,1v7(B)
("\\frac38" ?$,1v<(B)
("\\frac45" ?$,1v8(B)
("\\frac56" ?$,1v:(B)
("\\frac58" ?$,1v=(B)
("\\frac78" ?$,1v>(B)
("\\frown" ?$,1{"(B)
("\\gamma" ?$,1'3(B)
("\\ge" ?$,1y%(B)
("\\geq" ?$,1y%(B)
("\\geqq" ?$,1y'(B)
("\\geqslant" ?$,1y%(B)
("\\gets" ?$,1vp(B)
("\\gg" ?$,1y+(B)
("\\ggg" ?$,1z9(B)
("\\gimel" ?$,1uw(B)
("\\gnapprox" ?$,1zG(B)
("\\gneq" ?$,1y)(B)
("\\gneqq" ?$,1y)(B)
("\\gnsim" ?$,1zG(B)
("\\gtrapprox" ?$,1y3(B)
("\\gtrdot" ?$,1z7(B)
("\\gtreqless" ?$,1z;(B)
("\\gtreqqless" ?$,1z;(B)
("\\gtrless" ?$,1y7(B)
("\\gtrsim" ?$,1y3(B)
("\\gvertneqq" ?$,1y)(B)
("\\hbar" ?$,1uO(B)
("\\heartsuit" ?$,2#e(B)
("\\hookleftarrow" ?$,1w)(B)
("\\hookrightarrow" ?$,1w*(B)
("\\iff" ?$,1wT(B)
("\\imath" ?$,1 Q(B)
("\\in" ?$,1x((B)
("\\infty" ?$,1x>(B)
("\\int" ?$,1xK(B)
("\\intercal" ?$,1yz(B)
("\\iota" ?$,1'9(B)
("\\kappa" ?$,1':(B)
("\\lambda" ?$,1';(B)
("\\langle" ?$,1{)(B)
("\\lbrace" ?{)
("\\lbrack" ?[)
("\\lceil" ?$,1zh(B)
("\\ldots" ?$,1s&(B)
("\\le" ?$,1y$(B)
("\\leadsto" ?$,1v}(B)
("\\leftarrow" ?$,1vp(B)
("\\leftarrowtail" ?$,1w"(B)
("\\leftharpoondown" ?$,1w=(B)
("\\leftharpoonup" ?$,1w<(B)
("\\leftleftarrows" ?$,1wG(B)
("\\leftparengtr" ?$,1{)(B)
("\\leftrightarrow" ?$,1vt(B)
("\\leftrightarrows" ?$,1wF(B)
("\\leftrightharpoons" ?$,1wK(B)
("\\leftrightsquigarrow" ?$,1w-(B)
("\\leftthreetimes" ?$,1z+(B)
("\\leq" ?$,1y$(B)
("\\leqq" ?$,1y&(B)
("\\leqslant" ?$,1y$(B)
("\\lessapprox" ?$,1y2(B)
("\\lessdot" ?$,1z6(B)
("\\lesseqgtr" ?$,1z:(B)
("\\lesseqqgtr" ?$,1z:(B)
("\\lessgtr" ?$,1y6(B)
("\\lesssim" ?$,1y2(B)
("\\lfloor" ?$,1zj(B)
("\\lhd" ?$,2"!(B)
("\\ll" ?$,1y*(B)
("\\llcorner" ?$,1z~(B)
("\\lnapprox" ?$,1zF(B)
("\\lneq" ?$,1y((B)
("\\lneqq" ?$,1y((B)
("\\lnsim" ?$,1zF(B)
("\\longleftarrow" ?$,1vp(B)
("\\longleftrightarrow" ?$,1vt(B)
("\\longmapsto" ?$,1w&(B)
("\\longrightarrow" ?$,1vr(B)
("\\looparrowleft" ?$,1w+(B)
("\\looparrowright" ?$,1w,(B)
("\\lozenge" ?$,2%g(B)
("\\lq" ?$,1rx(B)
("\\lrcorner" ?$,1z(B)
("\\ltimes" ?$,1z)(B)
("\\lvertneqq" ?$,1y((B)
("\\maltese" ?$,2%`(B)
("\\mapsto" ?$,1w&(B)
("\\measuredangle" ?$,1xA(B)
("\\mho" ?$,1ug(B)
("\\mid" ?$,1xC(B)
("\\models" ?$,1yg(B)
("\\mp" ?$,1x3(B)
("\\multimap" ?$,1yx(B)
("\\nLeftarrow" ?$,1wM(B)
("\\nLeftrightarrow" ?$,1wN(B)
("\\nRightarrow" ?$,1wO(B)
("\\nVDash" ?$,1yo(B)
("\\nVdash" ?$,1yn(B)
("\\nabla" ?$,1x'(B)
("\\napprox" ?$,1xi(B)
("\\natural" ?$,2#n(B)
("\\ncong" ?$,1xg(B)
("\\ne" ?$,1y (B)
("\\nearrow" ?$,1vw(B)
("\\neg" ?,A,(B)
("\\neq" ?$,1y (B)
("\\nequiv" ?$,1y"(B)
("\\newline" ?$,1s((B)
("\\nexists" ?$,1x$(B)
("\\ngeq" ?$,1y1(B)
("\\ngeqq" ?$,1y1(B)
("\\ngeqslant" ?$,1y1(B)
("\\ngtr" ?$,1y/(B)
("\\ni" ?$,1x+(B)
("\\nleftarrow" ?$,1vz(B)
("\\nleftrightarrow" ?$,1w.(B)
("\\nleq" ?$,1y0(B)
("\\nleqq" ?$,1y0(B)
("\\nleqslant" ?$,1y0(B)
("\\nless" ?$,1y.(B)
("\\nmid" ?$,1xD(B)
("\\not" ?$,1%x(B)
("\\notin" ?$,1x)(B)
("\\nparallel" ?$,1xF(B)
("\\nprec" ?$,1y@(B)
("\\npreceq" ?$,1z@(B)
("\\nrightarrow" ?$,1v{(B)
("\\nshortmid" ?$,1xD(B)
("\\nshortparallel" ?$,1xF(B)
("\\nsim" ?$,1xa(B)
("\\nsimeq" ?$,1xd(B)
("\\nsubset" ?$,1yD(B)
("\\nsubseteq" ?$,1yH(B)
("\\nsubseteqq" ?$,1yH(B)
("\\nsucc" ?$,1yA(B)
("\\nsucceq" ?$,1zA(B)
("\\nsupset" ?$,1yE(B)
("\\nsupseteq" ?$,1yI(B)
("\\nsupseteqq" ?$,1yI(B)
("\\ntriangleleft" ?$,1zJ(B)
("\\ntrianglelefteq" ?$,1zL(B)
("\\ntriangleright" ?$,1zK(B)
("\\ntrianglerighteq" ?$,1zM(B)
("\\nu" ?$,1'=(B)
("\\nvDash" ?$,1ym(B)
("\\nvdash" ?$,1yl(B)
("\\nwarrow" ?$,1vv(B)
("\\odot" ?$,1yY(B)
("\\oint" ?$,1xN(B)
("\\omega" ?$,1'I(B)
("\\ominus" ?$,1yV(B)
("\\oplus" ?$,1yU(B)
("\\oslash" ?$,1yX(B)
("\\otimes" ?$,1yW(B)
("\\par" ?$,1s)(B)
("\\parallel" ?$,1xE(B)
("\\partial" ?$,1x"(B)
("\\perp" ?$,1ye(B)
("\\phi" ?$,1'F(B)
("\\pi" ?$,1'@(B)
("\\pitchfork" ?$,1z4(B)
("\\prec" ?$,1y:(B)
("\\precapprox" ?$,1y>(B)
("\\preceq" ?$,1y<(B)
("\\precnapprox" ?$,1zH(B)
("\\precnsim" ?$,1zH(B)
("\\precsim" ?$,1y>(B)
("\\prime" ?$,1s2(B)
("\\prod" ?$,1x/(B)
("\\propto" ?$,1x=(B)
("\\psi" ?$,1'H(B)
("\\quad" ?$,1ra(B)
("\\rangle" ?$,1{*(B)
("\\rbrace" ?})
("\\rbrack" ?])
("\\rceil" ?$,1zi(B)
("\\rfloor" ?$,1zk(B)
("\\rightarrow" ?$,1vr(B)
("\\rightarrowtail" ?$,1w#(B)
("\\rightharpoondown" ?$,1wA(B)
("\\rightharpoonup" ?$,1w@(B)
("\\rightleftarrows" ?$,1wD(B)
("\\rightleftharpoons" ?$,1wL(B)
("\\rightparengtr" ?$,1{*(B)
("\\rightrightarrows" ?$,1wI(B)
("\\rightthreetimes" ?$,1z,(B)
("\\risingdotseq" ?$,1xs(B)
("\\rtimes" ?$,1z*(B)
("\\sbs" ?$,3q((B)
("\\searrow" ?$,1vx(B)
("\\setminus" ?$,1x6(B)
("\\sharp" ?$,2#o(B)
("\\shortmid" ?$,1xC(B)
("\\shortparallel" ?$,1xE(B)
("\\sigma" ?$,1'C(B)
("\\sim" ?$,1x\(B)
("\\simeq" ?$,1xc(B)
("\\smallamalg" ?$,1x0(B)
("\\smallsetminus" ?$,1x6(B)
("\\smallsmile" ?$,1{#(B)
("\\smile" ?$,1{#(B)
("\\spadesuit" ?$,2#`(B)
("\\sphericalangle" ?$,1xB(B)
("\\sqcap" ?$,1yS(B)
("\\sqcup" ?$,1yT(B)
("\\sqsubset" ?$,1yO(B)
("\\sqsubseteq" ?$,1yQ(B)
("\\sqsupset" ?$,1yP(B)
("\\sqsupseteq" ?$,1yR(B)
("\\square" ?$,2!a(B)
("\\squigarrowright" ?$,1w](B)
("\\star" ?$,1z&(B)
("\\straightphi" ?$,1'F(B)
("\\subset" ?$,1yB(B)
("\\subseteq" ?$,1yF(B)